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Abstract

Researchers have explored the application of combina-
torial interaction testing (CIT) methods to construct sam-
ples to drive systematic testing of software system configu-
rations. Applying CIT to highly-configurable software sys-
tems is complicated by the fact that, in many such sys-
tems, there are constraints between specific configuration
parameters that render certain combinations invalid. In re-
cent work, automated constraint solving methods have been
combined with search-based CIT methods to address this
problem with promising results.

In this paper, we observe that the pattern of computation
in greedy CIT algorithms leads to sequences of constraint
solving problems that are closely related to one another. We
propose two techniques for exploiting the history of con-
straint solving: (1) using incremental algorithms that are
present within available constraint solvers and (2) mining
constraint solver data structures to extract information that
can be used to reduce the CIT search space. We evaluate
the cost-effectiveness of these reductions on four real-world
highly-configurable software systems and on a population
of synthetic examples that share the characteristics of those
four systems. In combination our techniques reduce the cost
of CIT in the presence of constraints to that of traditional
unconstrained CIT methods without sacrificing the quality
of solutions.

1. Introduction

Combinatorial interaction testing (CIT) has proven to be
an effective technique for systematically sampling a pro-
gram’s input space to achieve a high-degree of coverage and
fault detection [3, 15, 24]. When using CIT one models a
system as a collection of factors each with a finite set of pos-
sible values. The technique produces a set of factor-value
bindings that, typically, cover all possible pairs of factor-
values; higher-order coverage can also be achieved. CIT is

attractive because by covering all pairs or all n-tuples it is
possible to detect errors that arise only when specific com-
binations of factor values are enabled in a system.

Factors are often used to model program inputs and their
values to model specific input values, or equivalence classes
of values [3, 9]. In recent work, researchers have adapted
CIT techniques to reason about highly-configurable soft-
ware systems, i.e., one’s that have a large number of op-
tions for enabling and disabling different system capabili-
ties [15, 24]. CIT models for such systems would encode
an option as a factor and the possible choices for the option
as values. For example, Firefox allows users who enable
cookies to keep those cookies until they expire, until the
browser is closed, or to not store cookies and ask the user
to confirm acceptance of every cookie; this would be mod-
eled as a single factor with three possible values. Validating
such systems presents some significant challenges over and
above traditional software systems. The problem of testing
a single software system has been replaced with the much
harder problem of testing the set of software systems that
can be produced by all of the different possible bindings
of options. A single test case may run without failing un-
der one configuration, however the same test case may fail
under a different one [15, 24]. One cause for this is the
unintended interaction of multiple optional capabilities.

The optional capabilities of highly-configurable systems
are rarely completely independent. For example, the GCC
[11] man pages describe numerous options whose settings
are dependent on the setting of other options, e.g., “-finline-
functions-called-once ... Enabled if -funit-at-a-time is en-
abled.” and “-fsched2-use-superblocks ... This only makes
sense when scheduling after register allocation, i.e. with -
fschedule-insns2”. Failing to take such option constraints
into account is problematic for multiple reasons. Ignoring
constraints may lead to the generation of test configurations
that are illegal and this can lead to inaccurate test planning
and wasted effort. Even a small number of constraints can
give rise to enormous numbers of illegal configurations. In
[6] we report on a configuration model for the GCC 4.1 op-



timizer that consists of 199 factors and 40 constraints; those
constraints render about 25%, or 1.2 × 1061, of the possi-
ble optimizer configurations illegal. Clearly, it is infeasi-
ble to enumerate the illegal configurations. An additional
challenge arises because multiple explicit constraints may
interact to imply additional constraints; in our GCC model
two such implicit constraints were present. Even if a system
were small enough to allow enumeration of configurations,
accounting for the interactions among constraints requires
non-trivial reasoning.

To address CIT in the presence of constraints, we ex-
tended, in [6], the theoretical basis of CIT to include
general constraints encoded as propositional formulae de-
fined over factor-value bindings and presented a general
approach to integrating propositional boolean satisfiability
(SAT) solvers with greedy and search-based methods for
CIT. This method demonstrated that it is feasible to treat
the types of constraints that arise in real-world configurable
systems in existing CIT algorithms. Evaluation on a collec-
tion of realistic case studies and smaller examples demon-
strated that it is essential to consider constraints, since un-
constrained CIT produces invalid test configurations that
lead to wasted effort in subsequent test planning and de-
velopment. While feasible, however, the integration of SAT
and CIT algorithms increased the already significant cost
of CIT algorithms by more than 56% across three realistic
case studies. This is cause for concern about the scalability
of the technique.

In this paper, we seek to drive down the cost of solving
CIT problems in the presence of constraints without sac-
rificing solution quality, i.e., the number of generated test
configurations. To achieve this, we investigate approaches
for a synergistic integration of greedy CIT algorithms and
SAT algorithms. An effective integration is possible be-
cause greedy CIT algorithms incrementally construct a set
of candidate factor-value bindings and this produces se-
quences of SAT solver calls on formulae that are closely
related to one another. More specifically, every formula in
the sequence is an extension of an earlier formula where
a single additional conjunct is added. This history of SAT
solver calls paves the way for several optimizations to re-
duce CIT cost in the presence of constraints. The find-
ings we report in this paper make several contributions: (i)
we investigate the cost-effectiveness of incremental SAT al-
gorithms to exploit SAT history in CIT, (ii) we present a
technique for mining internal SAT solver data structures to
prune the CIT algorithm’s search space, (iii) we extend our
study of real highly-configurable software systems to in-
clude SPIN [14], GCC [11], Apache [1], and Bugzilla [20],
and (iv) we report the results of an evaluation that demon-
strates the cost-reduction and solution-quality-preservation
of our techniques across a range of configuration models.

In the next section, we provide some background on in-

teraction testing, modern SAT solvers, and an existing ap-
proach to combining the two. Section 3 provides a more
detailed presentation of the structure of SAT history that
we exploit, then describes how incremental SAT solving is
applied to CIT and, finally, how we exploit boolean con-
straint propagation (BCP) [18] information calculated dur-
ing SAT to reduce subsequent CIT processing. Section 4
provides an overview of the real systems we studied, out-
lines our methodology for synthesizing configuration mod-
els that share the characteristics of those systems, and then
reports on the cost and solution quality of different combi-
nations of CIT and SAT techniques. In Section 5 we con-
clude and discuss future work.

2. Background

To illustrate the challenges of testing highly-configurable
software consider GCC 4.1 [11]. In our analysis of the man-
ual pages for GCC [6], we found that it has 1462 differ-
ent run-time options that control the phases included in the
compilation process and the functionality of those phases.
199 of those options are related to the global optimization
phase; 186 of those are boolean configuration parameters
and the remaining 10 parameters have three different set-
tings. In total, there are 2186 × 310, or 4.6× 1061, different
configurations of the GCC optimizer. Thorough testing of
the optimizer is critical, but it is clearly impossible to test
all configurations.

2.1. Combinatorial Interaction Testing

One strategy that has been applied is to systematically
sample instances of software configurations so that all t-
way combinations of options appear [3]; we call this CIT
sampling. Testing those configurations has the potential
to expose errors that arise due to the t-way interaction of
configuration-specific components.

CIT is widely regarded as a powerful sampling technique
for functional input testing that may increase the ability to
find certain types of faults efficiently [3] and that provides
good code coverage [3, 9]. A major focus in the litera-
ture has been the development of efficient algorithms to find
smaller t-way samples [4, 12, 13, 21, 23]. Recent work has
seen those algorithms applied to user configurable systems
[15, 24], and software product lines [5, 19].

2.1.1 CIT Samples

A t-way CIT sample is defined by a covering array [4]. As
described above, the GCC optimizer has some configura-
tion parameters that have two values and some with three
values. We use a mixed level covering array to accommo-
date variation in the number of values.



mAETG(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
7: l=selectFirstFactorValue(unCovSet)
8: f=selectFirstFactor(l)
9: insertValueForFactor(l,f ,testCasecount)

10: p=permuteRemainingFactors()
11: for f ∈ p do
12: l=selectBestValue(f )
13: insertValueForFactor(l,f ,testCasecount)
14: saveCandidate(testCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 1: AETG Algorithm
Definition 2.1 A mixed level covering array,
MCA(N ; t, k, (v1, v2, ..., vk)), is an N×k array on v sym-
bols, where v =

∑k
i=1 vi, with the following properties: (1)

Each column 1 ≤ i ≤ k contains only elements from a set
Si of size vi. (2) The rows of each N× t sub-array cover all
t-tuples of values from the t columns at least one time [4].

The k columns of this array are called factors, where
factor fi has vi values. A covering array model, CAModel,
consists of k and vi, i ≤ 1 ≤ k. We use a shorthand nota-
tion to describe mixed level covering arrays by combining
entries with equally sized value domains vi. For example,
a 2-way CIT sample for the GCC optimizer would be writ-
ten as an MCA(N ; 2, 2189310) and its CAModel would be
2189310.

2.1.2 Finding CIT Samples

Finding a covering array for a configurable system is an op-
timization problem where the goal is to find a minimal set
of configurations satisfying the coverage criteria of all t-
sets. Many algorithms and tools exist that construct cover-
ing arrays, but we focus in this paper on one-row-at-a-time
greedy-algorithms in the style of the automatic efficient test
case generator (AETG) [3]. Multiple variants of AETG
have appeared in the literature, e.g., [7, 22], and we refer
to these as AETG-like.

Algorithm 1 sketches the basic structure of this algo-
rithm. Prior to execution an initialization step is used to cal-
culate the number of t-sets for the given problem; covering
all such sets drives continued execution of the algorithm.
The algorithm constructs an array with numTests rows.
A single row for the array is constructed in each iteration of
the loop at line 4 until all t-sets have been covered. The al-
gorithm constructs numCandidates different rows, line
5, and selects the best one to add to the array, lines 15-17.
The choice of the size of candidate set is one of the differ-

mAETG-SAT(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
6a: sat=false
6b: while !sat
7: l=selectFirstFactorValue(unCovSet)
8: f=selectFirstFactor(l)
8a: sat=¬ factorInvolved(f ) ∨ checkSAT(testCasecount)
9: insertValueForFactor(l,f ,testCase1)

10: p=permuteRemainingFactors()
11: forf ∈ p do
11a: sat=false
11b: tries = 1, maxTries = v
11c: while !sat and tries ≤ maxTries
12: l=selectBestValue(f )
12a: sat=¬ factorInvolved(f ) ∨ checkSAT(testCasecount)
12b: increment tries
13: insertValueForFactor(l,f ,testCasecount)
14: saveCandidateTestCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 2: AETG-SAT Algorithm
entiators of AETG-like algorithms. Our algorithm uses the
value 50 for numCandidates to be consistent with the
original description of AETG [3].

To build a single row, heuristics are applied to select the
first factor and its value, lines 7-9. In AETG a factor-value
pair is chosen that currently has the largest number of t-sets
left to cover. The order in which the remaining factors are
processed is shuffled, line 10, and then the best value for
each factor is selected, line 12-13, where the best value pro-
duces the most previously uncovered t-sets. Other greedy
algorithms [7, 22] use slightly different heuristics to select
the factor ordering.

2.2. Constrained CIT (CCIT)

In [6], we identify the need to treat constraints in CIT
and present an extension of the CIT model and algorithms to
find CIT samples in the presence of constraints. We briefly
review the key concepts here.

Constraints may disallow combinations of options,
which we refer to as forbidden constraints, or require that
when one option value is selected that another also be se-
lected. In this paper, we convert all constraints into a set
of forbidden constraints. We refer to these as explicit con-
straints, but it is known that combinations of explicit con-
straints can interact to give rise to implicit constraints [6].

Constraints are encoded as boolean formulae defined
over propositional variables that encode factor-value pairs;
a boolean option encodes a single variable, but an option
with n values will have n variables.



Explicit forbidden constraints are naturally encoded as
the negation of a conjunction of the propositional vari-
ables for factor-values. Sometimes other constraints re-
quire transformation into this form. For example, the GCC
optimizer constraint “-finline-functions-called-once ... En-
abled if -funit-at-a-time is enabled.” expresses an implica-
tion between the enabling of “unit-at-a-time” and “inline-
functions-called-once”. Negating this implication results
in a forbidden constraint between inline-functions-called-
once=false and unit-at-a-time=true. For example, this for-
bidden constraint would be expressed as ( inline-functions-
called-once ∨¬ unit-at-a-time ). Let A be the set of all
forbidden constraints expressed as disjunctions of proposi-
tional terms.

We require that each factor in the covering array has a
value in each row and this is encoded by at-least constraints
in our model [13]. For each factor, f ∈ f1 . . . fk, an at least
constraint is simply alf ≡

∨
v∈Vf

f = v; where Vf are the
possible values for factor f . While not strictly required, and
therefore not included in our approach in [6], an additional
set of at-most constraints [13] ensures that each factor has
a single value. For each factor, f ∈ f1 . . . fk, an at-most
constraint is simply amf ≡

∧
v,v′∈Vf∧v 6=v′ f 6= v∨f 6= v′.

We refer to
(
∧
a∈A

a) ∧ (
∧

f∈f1...fk

alf ) ∧ (
∧

f∈f1...fk

amf )

as the common base constraints, C, for a constrained CIT
problem; as defined C is in conjunctive normal form.

Treatment of constraints requires a modified definition
of a CIT sample.

Definition 2.2 A constrained mixed-level covering array,
CMCA(N ; t, k, (v1, v2, ..., vk), C) is an N × k array on v

symbols with constraints C, where v =
∑k

i=1 vi, with the
following properties: (1) Each column 1 ≤ i ≤ k contains
only elements from a set Si of size vi. (2) The rows of each
N × t sub-array cover all C-consistent t-tuples of values
from the t columns at least one time.

A tuple, is C-consistent if it can be extended to a row, i.e.,
a k-set, r, and C ∧ r is satisfiable. Note that such a satisfia-
bility test naturally accounts for implicit constraints so they
need not be included in C.

Algorithm 2 illustrates the integration of C-consistency
checks into our AETG-like algorithm where the CAModel
has been extended to include C. The algorithm is modi-
fied in three areas. (1) We piggy back onto the initialization
step (not shown) a calculation of the set of factors that are
involved in some constraint - binding values for uninvolved
factors does not require a consistency check. (2) If a consis-
tency check fails, we must undo a factor value binding and
try another; lines 6a-6b and 11a-11c and 12b realize this
backtracking. (3) Consistency checks, lines 8a and 12a, are
introduced to determine if the extension of the row is con-
sistent with the constraints. If we reach maxTries without

at−most:
  {!x1,!x2},{!x1,!x3},{!x2,!x3}
  {!x4,!x5}
  {!x6,!x7},{!x6,!x8},{!x7,!x8}

at−least:
  {x1,x2,x3}
  {x4,x5}
  {x6,x7,x8}   {!x1,!x6}

!x6

x4 !x4
level 2

!x3

!x2

level 3

level 1x1

!x7 !x7

!x8 UNSAT x8

x5 SAT

forbidden:
  {!x4,!x7}
  {!x4,!x8}

require(g=v4,h=v6)

Factors and Values:

h:{v6,v7,v8}
g:{v4,v5}
f:{v1,v2,v3}

Constraints:

forbidden(f=v1,h=v6)

Figure 1. Example SAT Search
reaching a satisfiable solution, the test candidate is removed
from the potential set of solutions (not shown). In principle,
any modern SAT solver could be used to discharge consis-
tency checks - in previous work we used zChaff [17] since it
is regarded as an efficient solver. We note that this integra-
tion, while effective on previous case studies [6], amounts
to an approach where AETG generates a candidate row us-
ing its heuristics and SAT tests it for consistency.

2.3. Boolean Satisfiability Solving

In Section 3, we will present a synergistic integration of
AETG and SAT solving algorithms. To understand this in-
tegration a basic understanding of modern SAT solving al-
gorithms is required.

SAT solvers work on formulae encoded in conjunctive
normal form (CNF). A CNF formula is a set of clauses each
of which must be true for the formula to be true. Clauses
in turn are disjunctions of a set of propositional variables
or their negation; we write such clauses using set notation,
e.g., {x1, !x2, x3} denotes the clause x1 ∨ ¬x2 ∨ x3.

State-of-the-art SAT solvers are based on the classic
DLL backtracking search [8] that explores a tree of truth-
assignments for propositional variables. There is a rich
literature on extensions to this algorithm to scale it to the
point where satisfiability can be checked on formulae with
many tens of thousands of variables. We discuss two tech-
niques that have been widely adopted in the SAT commu-
nity: boolean constraint propagation (BCP) and conflict-
clause learning [18].

Figure 1 illustrates a simple CCIT satisfiability check for
a system with one binary, g, and two ternary, f and h, fac-
tors. Two constraints are also specified: a require constraint,
which is converted into two forbidden constraints, and a
single forbidden constraint. As explained above, the sat-
isfiability problem is expressed in terms of distinct propo-
sitional variables for each possible factor-value assignment,
e.g., f = v3 is modeled with x3. The figure shows two



branches of a search for a satisfying assignment given the
input clause x1, i.e., f = v1. The search exploits the CNF
clauses shown on the lower right of the figure.

SAT solvers divide the process into two alternating
phases: search and propagation. A search phase (denoted
by solid edges) involves the selection of a propositional
variable and a truth assignment for it; both may be informed
by heuristics. A propagation phase (denoted by consecutive
dotted edges) involves using the current partial truth assign-
ment, defined by the path in the search tree, and the set of
CNF clauses to infer the values of propositional variables.

The BCP process attempts to produce unit clauses in or-
der to force a truth assignment to a variable. A unit clause is
one that has a single unbound variable in it. Since all clauses
must be true for the CNF formula to hold, the polarity of a
variable in a unit clauses implies its truth assignment. In the
Figure, the first step is an implicit search step reflecting the
assignment of x1 to true. The next three steps arise from
BCP. For example, in order for the clause {!x1, !x2} to be
true when x1 is true, it must be the case that !x2. After !x6 is
assigned the algorithm performs a search step where it fixes
x4; each search step increases the level of the search. A sec-
ond BCP phase follows where !x7 and !x8 are assigned. At
this point, the formula can be determined to be unsatisfiable
since the clause {x6, x7, x8} is false and the search back-
tracks. Satisfiability requires a single truth assignment to be
found and the right branch illustrates such an assignment;
at this point the search stops with x1, x5, and x8 true.

In general, when the search backtracks some subset of
the truth assignment is responsible for the conflict that leads
to the UNSAT result. In the case of our simple example, the
combination of x4 and !x6 will always lead to a conflict
with the clause {x6, x7, x8}. Conflict-clause learning tech-
niques perform a dependence analysis of the sequence of
truth assignments and the clauses that influenced those as-
signments in order to infer a minimal implicate for the con-
flict, i.e., the weakest clause that implies that the conflict is
guaranteed to arise. The negation of the conjunction of the
conflicting terms can be recorded by the solver and used to
prevent subsequent searches from ever exploring truth as-
signments that falsify the clause. In our example, the clause
{!x4, x6} assures that the search will never fail for the same
reason as it did along the left branch.

3. Exploiting SAT History

SAT solvers are designed to check satisfiability of for-
mulae independently. Solvers, in general, do not exploit
information from past searches in order to speed the search
for a satisfiable assignment because they have no way of
knowing the relationship between formulae submitted to the
solver at different times.

Execution of Algorithm 2 produces a series of SAT calls

on formula that are closely related to one another. The loop
beginning at line 11 processes a row one factor at a time and
in each iteration it assigns a value for the current factor. As
discussed in Section 2.2, all formulae for a CCIT problem
have a common set of base constraints, C, that are con-
joined with the partial configuration being built for the row.
The formula constructed on the kth iteration of the loop is:

C ∧ f1 = v1 ∧ f2 = v2 ∧ . . . ∧ fk = vk

using individual distinct atomic propositions to encode each
fi = vi; we give distinct names to all vi and use a proposi-
tional variable xi to denote whether that value is bound to
its associated factor. If the checkSAT call on line 12a suc-
ceeds then on the (k+1)st iteration of the loop, the formula

C ∧ f1 = v1 ∧ f2 = v2 ∧ . . . ∧ fk = vk ∧ fk+1 = vk+1

will be checked for satisfiability. The description of SAT
solving in Section 2.3 makes it clear that checking this for-
mula for satisfiability could restart the search at the point
where it assigned xk to true, then assign xk+1 to true and
continue the search for a satisfiable assignment.

These observations led us to investigate three techniques
for integrating AETG and SAT algorithms that we describe
in the remainder of this section.

3.1. Adding constraints to enhance BCP

The SAT literature discusses the benefits and risks of
adding additional clauses to a SAT problem [17, 18]. In
general, more clauses gives BCP the opportunity to make
more assignments to propositional variables in the propa-
gation phase. On the downside BCP has to traverse more
clauses, thereby potentially slowing the propagation phase.
If clauses eliminate search phases, then they are likely to
yield a significant benefit since avoiding search of a com-
binatorially sized sub-space of variable assignments more
than compensates for a slight increase in BCP cost.

Figure 1 illustrates the potential benefit of at-most
clauses in the first propagation phase by fixing the values of
x2 and x3 to be false. If a forbidden constraint of the form
{x3, !x7} had been included, then propagation would have
continued by inferring !x7, which in turn would have forced
x4 to be false and the entire search for a satisfiable assign-
ment would have finished in a single propagation phase.

In previous work [6], we followed the conventional wis-
dom of minimizing clauses in encoding our constraints. We
observed that the nature of the AETG algorithm would al-
low us to eliminate at-most constraints without compromis-
ing the correctness of the solution. What we didn’t under-
stand was the impact this would have on reducing the effec-
tiveness of BCP. While not an explicit topic of our evalu-
ation, we have observed small performance improvements
with the addition of at-most constraints.



3.2. Incremental SAT

Several modern SAT solvers offer support for adding and
retracting clauses from a SAT problem rather than submit-
ting a formula as a monolithic structure. When combined
with conflict-clause learning, this allows for a type of incre-
mental SAT solving where conflict-clauses learned in one
SAT search can be used to prune a subsequent SAT search.
The key issue here is the dependence of the conflict-clauses
on any retracted clauses. A SAT solver like zChaff will per-
form a clause dependence calculation and remove both the
retracted and any dependent learned clauses; this can be an
expensive process. A less costly approach is supported by
the MiniSAT [10] solver. MiniSAT allows a set of clauses
to be passed as assumptions and its conflict clause learn-
ing algorithm only stores clauses that are not dependent on
the assumption clauses; thus there is no cost for retracting
clauses from assumptions.

We adapted Algorithm 2 to use incremental support in
MiniSAT by adding clauses for the base constraints and in-
corporating the clauses encoding the partial configuration as
an assumption. In this way, learned conflict clauses related
to base constraints are accumulated across all SAT calls in
a CCIT problem. As shown in Section 4, incremental SAT
solving leads to non-trivial reductions in CCIT sample gen-
eration times relative to our previous implementation.

3.3. Mining SAT Assignment Information

To judge a partial configuration consistent with the CCIT
constraints a SAT solver constructs a truth assignment for
propositional variables. That assignment includes the val-
ues that are specified in the partial configuration, but it may
also include additional values. Figure 1 showed how BCP
propagation can assign values. In fact, the path from the
root down to the node marked SAT encodes a definitive truth
assignment for all eight propositional variables. Recall that
the example checked the satisfiability of a partial configura-
tion that fixed a single factor’s value, i.e., f1 = v1 which is
encoded as x1, yet the SAT solver effectively calculated a
total configuration. We exploit this information to feed back
definitive factor-value bindings to AETG so that it can ei-
ther (a) skip assigning a value to a factor later in a row when
a factor-value variable is determined to be true by SAT or
(b) reduce the set of possible values that could be assigned
to a factor later in the row by eliminating values determined
to be false by SAT.

Conceptually, this process is simple. When a formula is
determined to be satisfiable, we record the truth assignment
and return it to AETG along with the SAT verdict. An
additional subtlety arises because, unlike in Figure 1, the
truth assignment to determine satisfiable need not be total.
Imagine a propositional variable that is not present in any

clause – its value does not influence the satisfiability of the
formula so there is no reason to infer that it is either true
or false. Thus, our solution mines SAT data structures to
return an indication of whether a variable is true, false, or
undefined as a result of the preceding SAT call.

Algorithm 3 illustrates the extensions to Algorithm 2,
shown in bold, that realize the feedback from SAT to
AETG. We define two methods that mine SAT solver data
structures. (1) mineMayAssignments returns, for each
factor, the possible value assignments that are consistent
with the current partial configuration as determined by SAT.
It does this eliminating the possibility of assignments that
SAT has determined must be false. Over a sequence of SAT
calls the set of possible values for a factor decreases un-
til a value is selected. (2) mineMustAssignments re-
turns the set of factor-value pairs that must be present in
the partial configuration as determined by SAT. It does this
by extracting SAT assignments that must be true. Note that
undefined values provide no information to AETG.

May assignment information is calculated, at line 11d,
and used, at line 12, to prune the set of possible values from
which AETG will select its best value. This greatly reduces
the chance of selecting a value that will lead to an incon-
sistent partial configuration. Note that it is still possible
for the algorithm to produce unsatisfiable partial configu-
rations. This is because the mined assignment information
is based only on the current partial configuration. For exam-
ple, a variable assignment may be currently undefined while
in a subsequent SAT call for an extension of the configura-
tion that variable may be forced to be false.

Must assignment information is calculated, at line 13a,
and used, in lines 13b-13d, to make additional factor-value
assignments that ensure satisfiability of the current partial
configuration. When a factor is assigned a value at line 13c,
we delete that factor from p, at line 13d, so it is not explicitly
targeted for a value assignment by the loop at line 11.

Note that the SAT solver produces truth assignments
without regard for AETG’s objective of covering all t-sets.
Consequently, it is possible for must assignment informa-
tion mined from SAT to force factor-value assignments that
make it difficult for AETG to achieve full t-set coverage.
We have not observed this in practice, in fact, as shown in
Section 4 feeding back assignment information from SAT
to AETG appears to produce similar size CMCA arrays as
alternative techniques.

4. Evaluation

In this section we present a set of experiments designed
to evaluate the effect of using the history based SAT solv-
ing technique when incorporated with a greedy AETG-like
algorithm for finding CCIT samples. We begin with a de-
scription of the constrained covering array models, which



mAETG-History(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
6a: sat=false
6b: while !sat
7: l=selectFirstFactorValue(unCovSet)
8: f=selectFirstFactor(l)
8a: sat=¬ factorInvolved(f ) ∨ checkSAT(testCasecount)
9: insertValueForFactor(l,f ,testCasecount)

10: p=permuteRemainingFactors()
11: forf ∈ p do
11a: sat=false
11b: tries = 1, maxTries = v
11c: while !sat and tries ≤ maxTries
11d: maySet=mineMayAssignments()
12: l=selectBestValueFromMaySet(f ,maySet)
12a: sat=¬ factorInvolved(f)∨ checkSAT(testCasecount)
12b: increment tries
13: insertValueForFactor(l,f ,testCasecount)
13a: mustSet=mineMustAssignments()
13b: for(l, f) ∈ mustSet do
13c: insertValueForFactor(l,f ,testCasecount)
13d: p = p− f
14: saveCandidateTestCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 3: AETG-History Algorithm
consist of five models derived from four case studies of real
software systems and thirty synthesized data sets that mimic
the characteristics of the case study data.

4.1. Case Studies

In [6] we present case studies of two highly configurable,
non-trivial software systems. These are the SPIN model
checker[14] and the GCC compiler [11]. These studies re-
sult in three different models for testing configurable soft-
ware. The first system, the SPIN Model checker, consists
of two separate modules, a simulator (Spins) and a verifier
(Spinv). A single option turns on/off all features of these
two modules, therefore a natural and conservative testing
model would be to view these as two independent systems.
The second case study is the GCC compiler. For this system
we examined only a portion of the options, those related to
the optimizer.

In this paper we present two additional case studies,
Apache HTTP Server 2.2 [1] and Bugzilla 2.22.2 [20]. We
describe each of these next.
Apache HTTP Server 2.2: The Apache HTTP Server 2.2
(Apa), is an open source web server. It can be customized
by the system administrator through directives. The direc-
tives for Apache fall into nine categories, which include the
core program, extensions, server config,etc. In total there
are 379 configurable options. For the purposes of our case

study we initially limited our examination to the 166 op-
tions related to h directives from the user manual. Upon fur-
ther examination, we found that several of the constraints on
this set of options involved an additional 6 factors that were
not part of the h directives. We added those options to our
model for a total of 172 options of which 92% are binary.
We found 7 constraints in the Apache documentation that
related between 2 and 5 different options. In total, only 18
options (or 10.5%) were involved in the 7 constraints.
Bugzilla 2.22.2: Bugzilla [20] (Bugz) is a defect tracking
system from Mozilla. It maintains a database, generates re-
ports, and includes time tracking features. In this system
we again modeled a subset of the features. We used the
ones that are found in the following sections of the docu-
mentation: Chapter 3. – Administering Bugzilla, Chapter 5.
– Using Bugzilla and Chapter 6. – Customizing Bugzilla.
This resulted in 44 factors. Once again we had to add ad-
ditional factors, 10 in this case, to include all of those in-
volved in the constraints. Our final model has 52 factors
of which 94.2 % are binary. Bugzilla’s documentation de-
scribes 5 constraints; 4 relating 2 options and 1 relating 3
options. In total, 11 options (or 21.2%) were involved in
the 5 constraints.

In Table 1 we provide a summary of the covering array
models for the 5 case studies that highlights their main char-
acteristics. This table provides the number of factors for
each as well as the break out of the number and percentage
of the factors that have a specific number of values. It also
presents the total number of constraints as well as the num-
ber and percentage of factors involved in constraints. It then
gives the number and percent of the types of constraints by
arity (i.e. 2-way, 3-way etc.). The last two columns in this
table provide the number of constraints that individual fac-
tors participate in. We see this as an indication of constraint
“coupling”. For instance if a factor is involved in only a sin-
gle constraint it will fall into the first category. We do not
show data for factors involved in more than 2 constraints
due to space limitations. For each of these systems, we have
also enumerated the factors for the CAModel in an abbre-
viated form that shows the numbers of factors with a given
value (v#f ) in Table 2 as well as the arity of constraints
(arity#constraints).

4.2. Simulated Data

We used our summarization of case study characteris-
tics to synthesize 30 random covering array models with
constraints that share the characteristics of the case study
systems. Our synthesis algorithm starts by randomly gener-
ating a number of factors between 18 and 199 – the range of
factors found in our case studies. It then randomly selects
between 85-95% of the number of factors to be binary and
the rest to involve between 3 and 6 factors. We weight this



Factors and Values Constraints Factor Involv.
Num 2 3 4 5 or 6 Num Factor 2-way 3-way 4 or 5-way 1 Con. Per 2 Con. Per

Factor Values Values Values Values Cons Invol. Cons Cons Cons Factor Factor
Spins 18 13 (72.2) 0 (0.0) 5 (27.8) 0 (0.0) 13 9 (50.0) 13 (100.0) 0 (0.0) 0 (0.0) 5 (55.6) 0 (0.0)
Spinv 55 42 (76.4) 2 (3.6) 11 (20.0) 0 (0.0) 49 33 (60.0) 47 (95.9) 2 (4.1) 0 (0.0) 12 (36.4) 7 (21.2)
GCC 199 189 (95.0) 10 (5.0) 0 (0.0) 0 (0.0) 40 36 (18.1) 37 (92.5) 3 (7.5) 0 (0.0) 14 (38.9) 13 (36.1)
Apa 172 158 (91.9) 7 (4.1) 4 (2.3) 2 (1.2) 7 18 (10.5) 3 (37.5) 1 (12.5) 3 (37.5) 14 (77.8) 1 (5.6)
Bugz 52 49 (94.2) 1 (1.9) 2 (3.8) 0 (0.0) 5 11 (21.2) 4 (80.0) 1 (20.0) 0 (0.0) 11 (100.0) 0 (0.0)

Table 1. Case Study Characteristics: Number and Percent of Factors/Constraints

decision with a 40% probability that 3 will be chosen, and a
20% probability for the rest. The percentage of constraints
(in relation to the number of factors) in our systems varied
from 4% to 89% and due to this large variation we chose
to use the range in actual number of constraints, between 5
and 49, to synthesize constraints for our models. 80-100%
of these are selected as binary constraints and the rest were
chosen as 3, 4 or 5 way. We used a greedy generation ap-
proach, so at each point if we have assigned all constraints
to a category we are done.

The other consideration that we tried to enforce is to
make sure that between 40-100% of the factors involved in
constraints are involved in only a single constraint while 10-
20% of the factors are involved in two constraints. If there
are any constraints that are not bound to factors, after this
point, we randomly selected a factor to be involved with
between 3 and 9 constraints.

Using this characterization, we generated 55 random
samples. Of these, 21 were so highly constrained that
they had zero feasible configurations. Our algorithms de-
termined this in less than 2.5 seconds in every case. We
selected the first 30 of the remaining 34 that produced valid
CCIT samples and used those for our evaluation.

4.3. Technique Evaluation

We implemented Algorithm 2 (the base SAT algorithm)
using two different SAT solvers. The first one, zChaff [17]
is the same SAT solver that was used in [6]. This is written
in C++ and does not use an incremental SAT solving ap-
proach – we label this Basic SAT. The second implementa-
tion of the basic sat algorithm uses MiniSAT-C v 1.14 [10],
which implements an incremental SAT solving algorithm.
We chose the C version because it was a small package
that would be easy to comprehend for mining information –
we label this Inc SAT. The implementation of Algorithm 3
also used MiniSAT. We added code to mine its internal data
structures at each iteration of the algorithm to find must and
may information – we label this Hist SAT. The last algo-
rithm we used in our experiments is the base AETG imple-
mentation that does not handle constraints [4] – we label
this mAETG. Although the covering arrays produced by
this algorithm violate the constraints, we use this to show
timing data for a completely unconstrained implementation

of the algorithm.
We use the five test models from the case studies as well

as our 30 synthesized models to determine how well each
algorithm performs. This data is presented in Table 2. The
count data, No. SAT calls and Covering Array Size, are
averages over 50 runs rounded to the nearest whole num-
ber. We show the reduction in SAT calls (% Dec.) between
Incremental and History SAT techniques since this is an im-
portant driver of CCIT algorithm cost. The timing data are
the average of system and user time for 50 runs of each al-
gorithm on an Opteron 252 processor running SUSE 10.1
rounded to the nearest tenth of a second. An initialization
step occurs only once for all 50 runs and we amortize the
cost of initialization across each of the runs. In addition to
the individual runtimes, we show the percent increase (%
Inc.) in the runtime of History SAT relative to the original
mAETG algorithm (calculated on the full precision data);
negative increases mean that the time actually decreased in
the History SAT version. The aggregate data across the data
set are shown in the Avg row.

4.4. Results Discussion

Our primary objective in this research was to investigate
techniques for reducing the cost of CCIT sample generation
without increasing sample size. The data from our evalu-
ation clearly show the cost-reduction that can be achieved
using incremental SAT solving and our history technique.

Incremental SAT yields, on average, a 19% speedup over
the Basic SAT technique and History SAT yields an im-
provement of 33% over Basic SAT. More notably History
SAT yields a 9.8% improvement over the unconstrained
mAETG algorithm. This is remarkable because it is clear
that History SAT performs a significant amount of addi-
tional work – on average more than 24 thousand SAT calls.
The reduction in CCIT time is achieved because as the
AETG algorithm moves across a row the must/may infor-
mation mined from calculated SAT assignments is used to
prune the space of choices left open to AETG in completing
the row, thereby reducing AETG’s search space.

A significant portion of this pruning effect is due to the
use of must information which has the added benefit of re-
ducing the number of SAT calls needed to calculate a sam-
ple. History SAT yields, on average, a 59% reduction in



Covering Array, t=2 No. SAT Calls Time in Secs Size
CAModel No. Basic Inc Hist % mAETG Basic Inc Hist % Basic Hist

Cons. SAT SAT SAT Dec. SAT SAT SAT Inc. SAT SAT
Spins 21345 213 14,557 14,480 7,993 44.8 0.3 1.7 0.4 0.3 8.4 27 27
Spinv 24232411 24732 97,379 95,848 37,021 61.4 8.2 32.2 11.3 8.5 3.8 43 43
GCC 2189310 23733 57,388 55,432 31,089 43.9 217.6 320.0 286.9 204.0 -6.2 25 25
Apa 215838445161 23314251 44,199 40,088 32,687 18.5 278.7 318.6 249.2 244.1 -12.4 43 43
Bugz 2493142 2431 15,691 15,353 10,609 30.9 4.4 7.4 6.2 4.4 -0.3 25 25

1. 2193151 2273541 5,217 5,222 1,015 80.6 0.3 0.8 0.3 0.3 -8.0 15 15
2. 28633415562 2203341 71,372 70,444 27,196 61.4 62.0 94.9 63.7 59.6 -3.8 56 56
3. 28633435161 21933 49,351 49,034 19,784 59.7 41.3 59.7 53.5 38.1 -7.7 40 40
4. 22742 2931 8,265 8,271 1,974 76.1 0.9 1.8 1.1 0.8 -5.4 21 20
5. 251344251 21532 21,626 21,390 9,740 54.5 7.5 12.5 9.9 6.7 -11.2 29 29
6. 215537435564 2323641 138,852 137,133 73,590 46.3 400.1 531.6 520.2 373.6 -6.6 65 65
7. 2734361 22634 35,903 35,569 10,939 69.2 19.1 29.7 25.4 16.7 -12.5 34 34
8. 22931 21332 4,783 4,742 1,306 72.5 0.5 1.1 0.5 0.5 -1.5 12 12
9. 210932425363 2323441 88,832 88,047 39,696 54.9 119.0 160.5 119.2 117.5 -1.2 57 57
10. 25731415161 23037 24,477 24,302 5,874 75.8 10.8 14.5 8.3 7.8 -27.8 27 27
11. 213036455264 24037 125,611 125,000 47,188 62.2 241.9 330.0 242.4 212.8 -12.0 64 64
12. 21343753 21933 73,425 72,355 38,018 47.5 151.4 193.7 187.5 131.8 -12.9 42 42
13. 28434425264 22834 77,930 77,214 32,771 57.6 68.2 101.1 88.5 61.8 -9.3 61 60
14. 213634435163 22334 104,256 103,440 58,480 43.5 216.1 283.2 212.8 201.1 -6.9 57 59
15. 212434415262 22234 83,465 82,391 47,746 42.0 140.8 188.1 184.2 130.8 -7.2 51 51
16. 281354363 21332 61,503 61,165 41,683 31.9 55.4 76.2 55.1 51.4 -7.2 56 56
17. 25034415261 22032 31,367 31,416 14,231 54.7 10.6 17.7 11.2 9.9 -6.3 40 40
18. 2110325261 2233341 59,784 59,432 27,899 53.1 72.6 101.8 76.4 69.2 -4.6 41 42
19. 252334151 22134 22,051 21,726 6,629 69.5 6.6 11.3 7.0 6.0 -8.7 28 28
20. 211735425564 23237 119,054 117,566 42,021 64.3 178.9 257.8 190.0 179.5 0.3 65 65
21. 211337425362 23335 90,480 90,018 37,725 58.1 132.8 186.8 131.8 118.1 -11.1 53 54
22. 26433425261 23737 43,030 42,509 10,682 74.9 19.7 32.8 19.7 16.7 -15.4 40 40
23. 29336415161 21232 48,968 48,204 30,218 37.3 49.3 72.8 66.3 47.2 -4.2 40 39
24. 27832455164 2273541 74,293 73,146 19,975 72.7 56.3 85.9 73.2 49.9 -11.4 61 60
25. 27232415162 23335 41,589 41,320 8,445 79.6 30.0 38.2 24.7 21.3 -29.0 40 40
26. 213932455564 24037 127,108 124,191 55,057 55.7 294.1 387.4 279.1 252.4 -14.2 64 63
27. 2393262 21833 31,239 31,438 3,526 88.8 5.4 10.1 5.7 4.5 -16.2 48 48
28. 267345161 2323641 32,168 31,524 7,351 76.7 18.5 26.1 15.7 14.5 -21.7 32 32
29. 2294151 226344151 7,892 7,897 1,065 86.5 1.2 1.8 0.9 0.6 -49.5 16 16
30. 2304162 25 19,634 19,723 8,049 59.2 2.5 4.8 2.8 2.4 -4.4 46 46

Avg 55,793 55,058 24,265 59.0 83.5 114.1 92.3 76.1 -9.8

Table 2. Average Number of SAT Calls and Time over 50 Runs

SAT calls relative to Incremental (or Basic) SAT. Further-
more, while not shown in the table, the number of SAT
calls that yield an unsatisfiable result is over 21.6% for non-
History SAT methods, but only 6.5% for History SAT. Since
unsatisfiable SAT results are discarded, this means that His-
tory SAT saves on average over 8250 useless SAT calls for
each CCIT sample calculation.

Coupling SAT and AETG clearly has performance ben-
efits, but we were concerned that the heuristics used in each
search might conflict leading to sub-optimal solutions. In
practice, this does not appear to be a problem since the sum
of the covering array sizes across all 35 problems for Basic
and History SAT differ by one, 1462 and 1463 respectively.

We noted quite a bit of variation in the size and com-
plexity of the synthesized configuration models. To get a
sense of the scalability of our techniques on larger exam-
ples we analyzed the 10 examples with the largest number
of factors: GCC, Apa, 6, 11, 12, 14, 15, 20, 21, and 26.

For these 10 systems, the average reduction for History SAT
was 9.1% relative to mAETG, which is in line with the over-
all data. Moreover, for these systems this reduction trans-
lates to nearly 16 fewer minutes to generate a CCIT sam-
ple. Greedy CIT algorithms are usually run multiple times
to produce high-quality solutions, e.g., [2, 4] use between
50 and 20000 repetitions. In such a setting, our reductions
for a single CCIT sample calculation would translate into a
savings of between 13 hours and 219 days.

5. Conclusions

The conventional wisdom in the CIT community is that
constraints significantly complicate the problem of comput-
ing a CIT sample. None of the existing techniques can deal
with large numbers of interacting constraints without signif-
icantly increasing run-time or burdening the user [6]. The
developers of the original AETG state that ”Relations can



also be highly constrained. Large numbers of constraints
may significantly increase the amount of time required to
find a solution.” [16].

We believe that the techniques presented in this paper
represent a significant advance in calculating CIT samples
in the presence of constraints. In effect, synergistic inte-
gration of constraint satisfaction algorithms with CIT gen-
eration algorithms allows each algorithm to boost the per-
formance of the other. The result is that high-quality con-
strained CIT samples can be produced for the same cost as
unconstrained samples.

Our analysis of the 10 most complex examples in our
data set is promising evidence of the benefits of our methods
on realistically sized systems. Those systems, with an aver-
age of 153 factors, are several orders of magnitude smaller
than extremely large-scale highly-configurable systems be-
ing developed in industry. Furthermore, while our study
considered only pair-wise CCIT it is likely that for mission-
critical systems engineers will target higher-order cover-
age which will dramatically increase the cost of CIT. More
study is needed to better understand the scalability of our
CCIT methods to extremely large-scale highly-configurable
mission-critical systems.
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