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Abstract

A covering array CA(N ; t, k, v) is an N × k array such that every N × t sub-array
contains all t-tuples from v symbols at least once, where t is the strength of the
array. One application of these objects is to generate software test suites to cover
all t-sets of component interactions. Methods for construction of covering arrays for
software testing have focused on two main areas. The first is finding new algebraic
and combinatorial constructions that produce smaller covering arrays. The second
is refining computational search algorithms to find smaller covering arrays more
quickly. In this paper, we examine some new cut-and-paste techniques for strength
three covering arrays that combine recursive combinatorial constructions with com-
putational search, augmented annealing. This method leverages the computational
efficiency and optimality of size obtained through combinatorial constructions while
benefiting from the generality of a heuristic search. We present a few examples of
specific constructions and provide new bounds for some strength three covering
arrays.
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1 Introduction

Component based software development poses many challenges for the soft-
ware tester. Interactions among components are often complex and abundant.
Components may not be designed with the final product in mind which leaves
them prone to unexpected interaction faults. Ideally we want to test all pos-
sible interactions, but this is usually infeasible either time-wise or cost-wise.
We are, therefore, interested in generating test suites that provide coverage of
as many interactions as possible.

Suppose we have 20 components. If two of these have four possible configu-
rations, while the rest have three, we have 42 × 318 or 6,198,727,824 possible
interactions. We can, however, cover all of the two-way interactions among
these components with as few as 19 tests. Likewise, we can cover the three
way interactions with only 90 tests. Recently, these methods have been ap-
plied to the generation of software test suites allowing one to guarantee certain
interaction coverage in software systems [4, 5, 6, 7, 12, 13, 20, 21, 22, 23].

Table 1 shows a small example of four components with three configurations
each. In this scenario we have 34 = 81 possible interactions. We are testing
software components for a new integrated RAID controller. If it is not possible
to test all 81 interactions we can instead decide to test all pairs or triples of
interactions. For instance the first test case, (RAID 5, Novell, 128 MB, Ultra
160-SATA), covers six pairs of interactions (RAID 5 with Novell, RAID 5
with 128 MB of memory, RAID 5 with an Ultra 160-SATA disk interface,
Novell with 128 MB of memory, Novell with an Ultra 160-SATA interface,
and 128 MB of memory with an Ultra 160-SATA interface) or four triples of
interactions (RAID 5 and Novell with 128 MB, RAID 5 and Novell with Ultra
160-SATA, RAID 5 and 128 MB with Ultra 160-SATA, and Novell and 128
MB with Ultra 160-SATA). All two way interactions can be covered with nine
test cases or all three way interactions with the 27 test cases shown in Table
2.

At the current time there are two distinct areas of active research on combi-
natorial designs for software testing. The mathematics community is focusing
on building smaller designs of higher interaction strength [2, 3, 16, 17, 18].
The software testing community is focusing on greedy search algorithms to
build these in a more flexible environment, one that more closely matches real
testing needs [4, 5, 12, 13, 21, 20, 23]; in addition, more powerful search tech-
niques such as simulated annealing have been employed recently [6, 7]. Ideally
we would like to combine these ideas and build higher strength interaction
tests that are minimal and efficient to generate. As the methods of building
covering arrays for testing are varied, a trade off must occur between compu-
tational power and the cost of running the final test suites. In this paper we
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Component

RAID Operating Memory Disk

Level System Config Interface

RAID 0 Windows XP 64 MB Ultra-320 SCSI

RAID 1 Linux 128 MB Ultra-160 SCSI

RAID 5 Novell Netware 6.x 256 MB Ultra-160 SATA

Table 1
RAID integrated controller system: 4 components, each with 3 configurations

examine some methods of combining both computational search and recursive
combinatorial construction to efficiently build optimal test suites.

Component

RAID Operating Memory Disk RAID Operating Memory Disk

Level System Config Interface Level System Config Interface

RAID 5 Novell 128 MB Ultra 160-SATA RAID 1 Linux 64 MB Ultra 320

RAID 5 Novell 64 MB Ultra 320 RAID 5 Novell 256 MB Ultra 160-SCSI

RAID 1 Novell 256 MB Ultra 320 RAID 1 Linux 256 MB Ultra 160-SCSI

RAID 1 XP 128 MB Ultra 320 RAID 5 XP 256 MB Ultra 320

RAID 5 Linux 256 MB Ultra 160-SATA RAID 5 XP 64 MB Ultra 160-SATA

RAID 1 Novell 128 MB Ultra 160-SCSI RAID 0 Novell 256 MB Ultra 160-SATA

RAID 0 Linux 64 MB Ultra 160-SATA RAID 0 XP 256 MB Ultra 160-SCSI

RAID 0 XP 128 MB Ultra 160-SATA RAID 0 Linux 128 MB Ultra 160-SCSI

RAID 1 Linux 128 MB Ultra 160-SATA RAID 1 XP 64 MB Ultra 160-SCSI

RAID 0 Novell 128 MB Ultra 320 RAID 5 XP 128 MB Ultra 160-SCSI

RAID 5 Linux 64 MB Ultra 160-SCSI RAID 0 XP 64 MB Ultra 320

RAID 5 Linux 128 MB Ultra 320 RAID 1 Novell 64 MB Ultra 160-SATA

RAID 0 Novell 64 MB Ultra 160-SCSI RAID 0 Linux 256 MB Ultra 320

RAID 1 XP 256 MB Ultra 160-SATA

Table 2
Test suite covering all 3-way interactions for Table 1

2 Covering Arrays and Heuristic Search

The problems faced in software interaction testing are not unique. Similar
problems exist for testing in other disciplines such as agriculture, pharmaceu-
ticals, manufacturing and medicine [14]. The primary combinatorial objects
used to satisfy the coverage criteria for these types of problems are orthogonal
arrays and covering arrays. We begin with a few definitions and then describe
how these objects can be applied to software testing.

An orthogonal array OAλ(N ; t, k, v) is an N × k array on v symbols such that
every N × t sub-array contains all ordered subsets of size t from v symbols
exactly λ times. When λ is one we drop the subscript. Orthogonal arrays have
the property that λ = N

vt . We do not need such a stringent object for software
testing. In fact orthogonal arrays are too restrictive since they only exist for
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certain values of t, k, v. Instead we can use a covering array that allows some
duplication of coverage.

A covering array CAλ(N ; t, k, v) is an N × k array such that every N × t sub-
array contains all ordered subsets from v symbols of size t at least λ times.
When λ is one we omit the subscript. The covering array number CAN(t, k, v)
is the minimum number N of rows required to produce a CA(N ; t, k, v). For
example, CAN(2, 5, 3) = 11 [3]. In a covering array, CA(N ; t, k, v), t is the
strength, k the degree and v the order.

We map a covering array to a software test suite as follows. In a software test
we have k components or fields. Each of these has v configurations or levels.
A test suite is an N × k array where each row is a test case. Each column
represents a component and the value in the column is the particular config-
uration. In Table 2 a CA(27; 3, 4, 3) is given. Each component is represented
by one column and each row is an individual test case of the test suite.

In software systems, the numbers of configurations for each component vary
in size. We define a more general object to describe this variability (see [7] for a
more in-depth discussion). A mixed level covering array, MCA(N ; t, k, (v1, v2, ..., vk)),
is an N × k array on v symbols, where v =

∑k
i=1 vi, with the following prop-

erties:

(1) Each column i (1 ≤ i ≤ k) contains only elements from a set Si with
|Si| = vi.

(2) The rows of each N × t sub-array cover all t−tuples of values from the t

columns at least once.

When t = 3, the combinatorial research illustrates both of the depth of the
connection with combinatorial configurations and the difficulties that these
pose for software testers. The techniques applied to date when t = 3, at least
for small covering arrays, range from very simple construction methods such
as identifying distinct symbols to form a single symbol, through to more com-
plex cut-and-paste constructions using smaller covering arrays, and ultimately
sophisticated recursive constructions that combine small covering arrays but
also employ related combinatorial objects such as perfect hash families [2].
While the more sophisticated constructions yield substantially smaller cover-
ing arrays when they can be applied, these same constructions do not apply
as generally as we require. For a summary of known results when t = 3 see
[3].

Computational search techniques to find covering arrays include greedy algo-
rithms and standard combinatorial search techniques such as simulated an-
nealing [4, 7, 20, 23]. We use simulated annealing, a search technique for
solving combinatorial optimization problems, that yields good general results
for finding minimal test suites especially when the problem size is relatively
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small [7].

In simulated annealing a search problem can be specified as a set Σ of feasible
solutions (or states) together with a cost c(S) associated with each feasible
solution S. An optimal solution corresponds to a feasible solution with overall
(i.e. global) minimum cost. We define a feasible solution S ∈ Σ, a set TS of
transformations (or transitions), each of which can be used to change S into
another feasible solution S ′. The set of solutions that can be reached from S

by applying a transformation from TS is the neighbourhood N(S) of S.

To start, we randomly choose an initial feasible solution. At each trial, we
select a transition to a neighbour at random. If the neighbour has lower or
equal cost, we accept the transition. If the transition results in a feasible
solution S ′ of higher cost, then S ′ is accepted with probability e−(c(S′)−c(S))/T ,
where T is the controlling temperature of the simulation. The temperature
is lowered in small steps to allow the system to approach “equilibrium” at
each temperature through a sequence of trials at this temperature. Usually
this is done by setting T := αT , where α (the control decrement) is a real
number slightly less than one. After an appropriate stopping condition is met,
the current feasible solution is taken as the solution of the problem at hand.
Allowing a move to a worse solution helps to keep the solution from being stuck
in a bad configuration, while continuing to make progress. The algorithm stops
once a feasible solution of cost zero is obtained or the current solution is frozen.
See [6, 7] for a more detailed description of using simulated annealing to find
covering arrays.

Simulated annealing performs well when the search space is small and there
are abundant solutions. As the search space increases and the density of poten-
tial solutions becomes sparser the algorithm may fail to find a good solution
or may require extremely long run times. Careful tuning of the parameters of
temperature and cooling improves upon the results, but at a potential com-
putational cost. Cohen et al. present results suggesting that annealing works
well for covering arrays, often produces smaller test suites than other compu-
tational methods, and sometimes improves upon combinatorial constructions.
It fails to match the known constructions for larger problems, especially when
t = 3 [7].

Recursive and direct combinatorial constructions often provide a better bound
in less computational time than heuristic search. However, they are not as gen-
eral and must be tailored to the problem at hand. An in-depth knowledge is
often needed to decide which construction best suits a particular problem. We
develop a new strategy to take advantage of the strengths of each, which we
call augmented annealing. The idea of using small building blocks to construct
a larger array is used often in combinatorial constructions. We refer to these
techniques in general as cut-and-paste methods. Often techniques to obtain a
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general solution result in objects that are larger than need be. If our only aim
is to construct an individual object we can relax the construction and build an
object that fits our needed criteria. In the next sections we use combinatorial
constructions and augment them with heuristic search to allow one to con-
struct an array. We have used this method successfully to construct objects
with lower bounds than that of simulated annealing alone and in many cases
have improved upon results for known combinatorial constructions [8].

We outline the primary ideas in augmented annealing next. Consider a typ-
ical recursive construction. The problem is decomposed by using a “master”
structure that is used to determine the placement of certain “ingredients”. In
this prototype scheme, a number of fatal problems can arise. A decomposi-
tion imposed by the master may not cleanly separate the ingredients, so that
ingredients overlap or interact. The character and extent of the interaction
results in either a specialized definition of allowed ingredients, or (as in our
covering problem) additional coverage not required in the problem statement.
Combinatorial constructions focus on proving general results, and hence often
permit an overlap that is asymptotically small. However, for instances that are
themselves small, the overlap can mean the difference between a good solution
and a poor one.

Even more severe problems arise. It may happen that in a combinatorial con-
struction, we have no general technique for producing the needed ingredients.
When this occurs, the construction simply fails, despite its “success” at con-
structing a large portion of the object sought. When this happens, current
techniques abandon the combinatorial construction and employ computational
search.

Augmented annealing suggests a middle road. We use a combinatorial con-
struction to decompose the problem, but then use simulated annealing (or
any other search technique) to:

(1) produce ingredients for which no combinatorial construction is known;
(2) minimize overlap between and among ingredients; and
(3) complete partial structures (seeded tests) when no combinatorial tech-

nique for completion is available.

This enables us to use combinatorial decompositions to reduce a problem to a
number of smaller subproblems, on which simulated annealing can be expected
to be both faster and more accurate than on the problem as a whole. By
having simulated annealing use knowledge about which t-tuples really need to
be covered, we avoid much duplicate coverage in general constructions.

In the remainder of the paper, we illustrate this idea using three combinatorial
constructions; the first class of constructions is discussed in [8], while the
second is a new general construction.
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3 Cut-and-Paste-Constructions

We present several combinatorial constructions in this section that involve
decomposing the covering array into smaller objects. We extend the “tradi-
tional” approach in recursive constructions by allowing small pieces to be built
using computational search.

3.1 Ordered Design Construction

An ordered design ODλ(t, k, v) is a k×λ ·
(

v
t

)

· t! array with v entries such that

(1) each column has v distinct entries, and
(2) every t columns contain each row tuple of t distinct entries precisely λ

times.

When λ = 1 we write OD(t, k, v). An OD(3, q + 1, q + 1) exists when q is
a prime power [10]. We use an ordered design as an ingredient for building
a CA(3, q + 1, q + 1) since it already covers all triples with distinct entries,
having the minimal number of blocks. This handles many but not all of the
triples required. The covering array is completed by covering the remaining
triples. We describe a general construction next.

Construction 1 CA(3, q + 1, q + 1) ≤ q3 − q +
(

q+1
2

)

× CA(3, q + 1, 2) when
q is a prime power.

To create a CA(3, q+1, q+1) begin with a OD(3, q+1, q+1) of size N3 = (q+
1)×q×(q−1). This covers all triples of the form (a, b, c) where a 6= b 6= c 6= a.
To complete the covering array we need to cover all of the triples of the form
(a, a, b), (a, b, b), (a, b, a) and (a, a, a). These are exactly the triples covered
by a CA(N2; 3, q + 1, 2) on symbol set {a, b}. Since a and b can be any of
(

q+1
2

)

combinations we append
(

q+1
2

)

CA(N2; 3, q+1, 2)s to the N3 rows of the

ordered design. This gives us a CA(3, q + 1, q + 1).

Unnecessary coverage of triples occurs. In fact, any triple of the form (a, a, a)
is covered at least q times rather than once. We therefore relabel entries in the
CA(N2; 3, q+1, 2)s to form a constant row; deleting these reduces the number

of rows required by
(

q+1
2

)

. We can save even more:

Construction 2 CA(3, q + 1, q + 1) ≤ q3 − q +
(

q+1
2

)

× CA(3, q + 1, 2) −

(q2 + 2q + 1) when q is a prime power and there are two disjoint rows in the
CA(3, q + 1, 2).
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In Construction 1 we exploit overlap in coverage of triples that occurs if each
of the CA(N2; 3, q+1, 2)s has two disjoint rows. In this case we remap the two
disjoint rows, without loss of generality, to the form (a, a, ..., a) and (b, b, ..., b).

We remove the 2×
(

q+1
2

)

= q2 + q rows and add back in q +1 rows of the form

(a, a, ..., a).

We give an example using CA(3, 6, 6). The ordered design has 120 rows. There
are 15 combinations of two symbols. In Construction 1, we create a CA(3, 6, 2)
with 12 rows. We therefore add back in 180 rows. This gives us a CA(3, 6, 6) of
size 300. This is smaller than the bound reported by a construction in [3], and
matches that found by annealing in [7]. Removing 15 constant rows lowers this
bound to 285. For Construction 2, we find a CA(12; 3, 6, 2) having two disjoint
rows (see Table 3). Therefore we remove 30 rows of the type (a, a, ..., a) for a
total of 270 rows. We add back in six rows, one for each symbol, to achieve a
covering array of size 276. This improves on both reported bounds above.

Let us generalize further. A (2,1)-covering array, denoted by TOCA(N ; 3, k, v; σ)
is an N × k array containing σ or more constant rows, in which every N × 3
subarray contains every 3-tuple of the form (a, a, b), (a, b, a), and (b, a, a) with
a 6= b, and contains every triple of the form (a, a, a). TOCAN(3, k, v; σ) de-
notes the minimum number N of rows in such an array.

A set B of subsets of {1, . . . , k} is a linear space of order k if every 2-subset
{i, j} ⊆ {1, . . . , k} appears in exactly one B ∈ B.

Construction 3 Let q be a prime power. Let B = {B1, . . . , Bb} be a linear
space on K = {1, . . . , k}. Let ∅ ⊆ L ⊆ K. Suppose that for each Bi ∈ B there
exists a TOCA(Ni; 3, q + 1, |Bi|; |Bi ∩ L|). Then there exists a CA(q3 − q +
|L| +

∑b
i=1(Ni − |Bi ∩ L|); 3, q + 1, q + 1).

We start with an OD(3, q + 1, q + 1) and for each Bi ∈ B, we construct the
TOCA on the symbols of Bi with the constant rows (to be removed) on the
symbols of Bi ∩ L. Then |L| constant rows complete the covering array.

3.2 Roux-type Constructions

In [16], a theorem from Roux’s Ph.D. dissertation is presented.

Theorem 1 CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Proof. To construct a CA(3, 2k, 2), we begin by appending two CA(N3, 3, k, 2)s
side by side. We now have a N3 × 2k array. If one chooses any three columns
whose indices are distinct modulo k, then all triples are covered. The remain-
ing selection consists of a column x from among the first k, its copy among
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the second k, and a further column y. When the two columns whose indices
agree modulo k are to share the same entry, such a triple is also covered. The
remaining triples are handled by appending two CA(N2, 2, k, 2)s side by side,
the second being the bit complement of the first. Therefore if we choose two
distinct columns from one half, we choose the bit complement of one of these,
thereby handling all remaining triples. This gives us a covering array of size
N2 + N3. �

Chateauneuf et al. [3] prove a generalization, which we repeat here.

Theorem 2 CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

Proof. Begin as in Theorem 1 by placing two CA(N3; 3, k, v)s side by side.
Let C be a CA(N2; 2, k, v). Let π be a cyclic permutation of the v symbols.
Then for 1 ≤ i ≤ v − 1, we append N2 rows consisting of C and πi(C) placed
side-by-side. The verification is as for Theorem 1. �

We now develop a substantial generalization to permit the number of factors
to be multiplied by ` ≥ 2 rather than two; this is the k’ary Roux construction.
To carry this out, we require another combinatorial object. Let Γ be a group of
order v, with � as its binary operation. A difference covering array D = (dij)
over Γ, denoted by DCA(N, Γ; 2, k, v), is an N × k array with entries from Γ
having the property that for any two distinct columns j and `, {dij � d−1

i` :
1 ≤ i ≤ N} contains every non-identity element of Γ at least once. When Γ
is abelian, additive notation is used, explaining the “difference” terminology.
We shall only employ the case when Γ = Zv, and omit it from the notation.
We denote by DCAN(2, k, v) the minimum N for which a DCA(N, Zv; 2, k, v)
exists.

Theorem 3 CAN(3, k`, v) ≤ CAN(3, k, v) + CAN(3, `, v) + CAN(2, `, v) ×
DCAN(2, k, v).

Proof. We suppose that the following all exist:

(1) a CA(N ; 3, `, v) A;
(2) a CA(M ; 3, k, v) B;
(3) a CA(R; 2, `, v) F ; and
(4) a DCA(Q; 2, k, v) D.

We produce a CA(N + M + QR; 3, k`, v) C (see Figure 1). For convenience,
we index the k` columns of C by ordered pairs from {1, . . . , k} × {1, . . . , `}.
C is formed by vertically juxtaposing three arrays, C1 of size N × k`, C2 of
size M × k`, and C3 of size QR× k`. We describe the construction for each in
turn.

C1 is produced as follows. In row r and column (i, j) of C1 we place the entry
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C

C

C

N rows

M rows

RQ rows

1          . . .              lk

1

2

3

Fig. 1. k’ary Roux Construction

1C  construction

1

N

A

CA(N;3,l,v)

k times

A A A. . . 

1          . . .             l

Fig. 2. Construction of C1

1

N

A

. . . 

C  construction2

CA(N;3,k,v)

1          . . .              k

11 11 11

21 21 21

A     A      . . .      A

A     A      . . .      A

A     A      . . .      AN1 N1 N1

12 12A     A      . . .      A

A     A      . . .      A
12

22 22 22

N2 N2 N2A     A      . . .      A

A     A      . . .      A

A     A      . . .      A

l times

1k 1k 1k

A     A      . . .      A2k 2k 2k

Nk Nk Nk

Fig. 3. Construction of C2

in cell (r, j) of A. Thus C1 consists of k copies of A placed side by side. This
is illustrated in Figure 2.

C2 is produced as follows. In row r and column (i, j) of C2 we place the entry
in cell (r, i) of B. Thus C2 consists of ` copies of the first column of B, then `

copies of the second column, and so on (see Figure 3).

To construct C3 (see Figure 4), let D = (dij : i = 1, . . . , Q; j = 1 . . . , k) and
F = (frs : r = 1, . . . , R; s = 1, . . . , `). Choose a cyclic permutation π on the v

symbols of the array. Then in row (i − 1)R + r and column (j, s) of C3 place
the entry πdij (frs).
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11 Q1

Q1

Q1
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F  +  D F  +  D

F  +  D
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Qk

Qk

Qk
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 .
 .

RQ

F

3C    construction

1                                                  . . .                                                      k

1           . . .             l

1

F  +  D

l

1

R

l

l

11

21

R1

2l

Rl

1l

2l

R

11

21

11

21

R1

2l

F  +  D

F  +  D

F  +  D

1l 1k

1k

1kR

2l

l

ll

Fig. 4. Construction of C3

We verify that C is indeed a CA(N + M + QR; 3, k`, v). The only issue is to
ensure that every 3 columns of C cover each of the v3 3-tuples. Select three
columns (i1, j1), (i2, j2), and (i3, j3) of C. If j1, j2 and j3 are all distinct, then
these three columns restricted to C1 arise from three different columns of A,
and hence all 3-tuples are covered. Similarly, if i1, i2, and i3 are all distinct,
then restricting the three columns to C2, they arise from three distinct columns
of B and hence again all 3-tuples are covered.

So we suppose without loss of generality that i1 = i2 6= i3 and j1 6= j2 = j3.
The structure of C3 consists of a Q × k block matrix in which each copy is
a permuted version of F (under a permutation that is a power of π). That
i1 = i2 indicates that two columns are selected from one column of this block
matrix, and that i3 is different means that the third column is selected from
a different column of the block matrix. Now consider a selection (σ1, σ2, σ3)
of symbols in the three chosen columns of C (actually, of C3). Each selection
of (σ1, σ2) appears in each block of the Q permuted versions of F appearing
in the indicated column of the block matrix. Now suppose that σ3 = πi(σ2);
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since π is a v-cycle, some power of pi satisfies this equality. Considering the
permuted versions of F appearing in the columns corresponding to i3, we
observe that since D is an array covering all differences modulo v, in at least
one row of the block matrix, we find that the block X in column i3 and the
block Y in column i2 satisfy Y = πi(X). Hence every choice for σ3 appears
with the specified pair (σ1, σ2). �

This can be improved upon: we do not need to cover triples when σ3 = σ2

since these are covered in C1. Nor do we need to cover 3-tuples when σ1 = σ2,
since these are covered in C2. So we can eliminate some rows from F since we
do not need to cover pairs whose symbols are equal in F . This modification
improves further on the bounds.

3.3 Construction Using Generalized Hadamard Matrices

Augmented annealing affords the opportunity to develop “constructions” when
some of the “ingredients” are not known at all. We illustrate this next. The
basic plan is to simply construct a large portion of a covering array to use
as a seed. Consider an OAλ(2, k, v). Each 2-tuple is covered exactly λ times.
Some 3-tuples are also covered. Indeed, among the v 3-tuples containing a
specified 2-tuple, at least one and at most min(v, λ) are covered. If λ of the
v are covered for every 2-tuple, the orthogonal array is supersimple. Little is
known about supersimple orthogonal arrays except when k is small. However
our concern is only that “relatively many” triples are covered using “relatively
few” rows. This is intentionally vague, since our intent is only to use the rows
of the orthogonal array as a seed for a strength three covering array. A nat-
ural family of orthogonal arrays to consider arise from generalized Hadamard
matrices (see [9]). We have no assurance that the resulting orthogonal arrays
are supersimple, but instead choose generalized Hadamard matrices since they
provide a means to cover many of the triples to be covered by the covering
array. Although orthogonal arrays in general may be useful in constructions
here, those from generalized Hadamard matrices appear frequently to cover ei-
ther only one, or all v, of the triples containing a specified pair; this regularity
appears to be beneficial. In the next section, we report computational results
using these as seeds in annealing. The most important remark here is that,
given such a generalized Hadamard matrix, it is not at all clear what “ingredi-
ents” are needed to complete it to a covering array in general, despite the fact
that in any specific case we can easily enumerate the triples left uncovered.
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0 0 0 0 0 0

1 1 1 1 1 1

0 1 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 1

0 1 0 1 1 1

1 1 0 1 0 0

1 1 0 0 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

Table 3
TOCA(12; 3, 6, 2; 2)

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 0 0 1

1 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 0 0 0

0 1 1 0 0 1 0 0 1 0

0 0 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 1

0 0 1 1 0 0 1 0 0 1

0 1 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 1 1

0 1 0 0 0 1 1 1 0 1

Table 4
TOCA(13; 3, 10, 2; 2)

4 Computational Results

4.1 Constructions Using Ordered Designs

We presented constructions for CA(3, 6, 6)s earlier. Construction 1 gave a size
of 300, while Construction 2, requiring covering arrays with two disjoint rows,
gave a size of 276. Table 3 gives a CA(3, 6, 2) covering array with two disjoint
rows.

We can create variations on this construction using augmented annealing. We
can construct a TOCA(30; 3, 6, 3; 0). The bound for a CA(3, 6, 3) is 33 so we
have saved three rows by using augmented annealing. We can use this to cover
(

3
2

)

= 3 combinations of the six pairs of symbols. There are still 12 remaining.

We can cover these using 12 TOCA(12; 3, 6, 2; 2)s. Each of these are of size
10 once constant rows are removed. Lastly we add back in three rows of type
a, a, a, a, a, a (we can exclude the three symbols covered by the TOCA(3, 6, 3))
and join these together. This gives us a covering array of size 120+30+(12×
10)+3 = 273. This is smaller than the constructions given. Using instead two
TOCA(30; 3, 6, 3; 0)s reduces the bound further to 270. Other linear spaces in
Construction 3 can be employed. In the case of CA(3, 6, 6) we found the best
bound using only two building blocks. We used annealing to create an ordered
design of size 120 and annealing to create a TOCA(140; 3, 6, 6; 0). This gives
us a CA(260; 3, 6, 6), improving considerably on the constructions given above.

These applications of Construction 3 can be used in all of the cases outlined
below. Tables 8-11 show the smallest sizes of (2,1)-covering arrays found by
simulated annealing. The first column of each gives the size with v disjoint
rows, and the second with no seeded rows.

Table 5 shows the smallest covering arrays found using two augmented meth-
ods and provides the smallest numbers we have obtained using straight an-
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nealing as well as known bounds published in [3, 7]. The first method, labeled
A, uses an ordered design combined with a TOCA(3, k, k; 0) found by an-

nealing. The second method uses an ordered design and combines it with
(

k
2

)

TOCA(3, k, 2; 2)s. The best values we have found for these arrays are given
in Table 6. The ordered design for CA(3, 6, 6) was created using annealing.
All of the other ordered designs were created using the definition of PSL(2, q)
(see [1]). Values in bold font are new upper bounds for these arrays.

In the case of CA(3, 8, 8) and CA(3, 9, 9), the collection of all triples can be
covered exactly, i.e. every triple is covered precisely once (this is an orthogo-
nal array of strength three). We therefore cannot improve over the best known
result since it is optimal. However, these cases nevertheless illustrate improve-
ment from augmented annealing over straight annealing. The smallest array
we have found using simulated annealing in a reasonable amount of computa-
tional time for the CA(3, 8, 8) has 918 rows. This result required almost three
hours to run, illustrating the severity of the difficulty with naive computa-
tional search. We can instead create an OD(3, 8, 8) of size 336 in significantly
less time and anneal a (2,1)-covering array of size 280 in approximately five
minutes. This provides us with a CA(3, 8, 8) of size 616 which is smaller and
computationally less expensive than using just annealing.

For CA(3, 9, 9) similar results are found. In this case, however, using either
TOCA(3, 9, 2; 2)s or a TOCA(3, 9, 9; 0) does not fare as well as using Con-
struction 3 with a linear space consisting of twelve blocks of size three; then
CAN(3, 9, 9) ≤ 900 is obtained. Perhaps this serves well to illustrate a general
conclusion. An optimal solution has 729 rows, while annealing alone takes sub-
stantial time to obtain a bound of 1490. Augmented annealing yields a bound
of 900 quickly, and applies more generally than the existence of an orthogonal
array.

For the CA(3, 10, 10) we can use the ordered design construction to generate
the first part of this array. We can build 45 TOCA(13; 3, 10, 2; 2)s and add
back in 10 rows of type a, a, .., a. If we do this we have an array of size 1225
which improves upon the published bound of 1331 [3]. We can also build
a TOCA(499; 3, 10, 10; 0) using annealing. When combined with the ordered
design, the size of the covering array is 1219. The smallest array we have
built with straight annealing for a CA(3, 10, 10) is of size 2163. Again using
Construction 3 with a suitably chosen linear space yields the best known
result. A linear space with three lines of size four and nine of size three gives
CAN(3, 10, 10) ≤ 1215. It appears that the TOCA(3, 10, 10; 0) is not yielding
as strong a result in part because it has, in some sense, become a “large”
ingredient and annealing is not as effective.
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Augmented Simulated Smallest Reported1

CA(t, k, v) Annealing Annealing Array Size

A B

CA(3, 6, 6) 260 276 300 300

CA(3, 8, 8) 616 624 918 512

CA(3, 9, 9) 906 909 1,490 729

CA(3, 10, 10) 1,219 1,225 2,163 1,331

CA(3, 12, 12) 2,339 2,190 4,422 2,197

CA(3, 14, 14) 4,134 3,654 8,092 4,096

Table 5
Sizes for covering arrays using augmented annealing.

Method A = TOCA(3, k, k; 0), Method B = TOCA(3, k, 2; 2)s
1. Source = Chateauneuf et al.[3] and Cohen et al. [7]

TOCA(3, q + 1, 2; 2)s

t, k, v Size

3, 6, 2 12

3, 8, 2 12

3, 9, 2 13

3, 10, 2 13

3, 12, 2 15

3, 14, 2 18

Table 6
Sizes for TOCA(3, q + 1, 2; 2)s

TOCA(3, q + 1, q + 1; 0)

t, k, v Size Ordered Design

3, 6, 6 140 120

3, 8, 8 280 336

3, 9, 9 402 504

3, 10, 10 499 720

3, 12, 12 1,019 1,320

3, 14, 14 1,950 2,184

Table 7
Sizes for TOCA(3, q + 1, q + 1; 0)s and ordered designs
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t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 6, 2 12 12

3, 6, 3 33 30

3, 6, 4 60 56

3, 6, 5 99 94

3, 6, 6 145 140

Table 8
Sizes for TOCAs with k = 6

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 8, 2 12 12

3, 8, 3 33 30

3, 8, 4 64 60

3, 8, 5 105 100

3, 8, 6 156 150

3, 8, 7 217 210

3, 8, 8 288 280

Table 9
Sizes for TOCAs with k = 8

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 9, 2 13 12

3, 9, 3 36 33

3, 9, 4 70 67

3, 9, 5 116 110

3, 9, 6 171 166

3, 9, 7 239 233

3, 9, 8 316 308

3, 9, 9 416 402

Table 10
Sizes for TOCAs with k = 9

4.2 Constructions from Generalized Hadamard Matrices

Table 12 gives some results for building covering arrays from strength two or-
thogonal arrays of index higher than one. These are from Generalized Hadamard
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t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 10, 2 13 12

3, 10, 3 36 33

3, 10, 4 70 66

3, 10, 5 115 111

3, 10, 6 172 165

3, 10, 7 239 232

3, 10, 8 322 310

3, 10, 9 409 401

3, 10, 10 506 499

Table 11
Sizes for TOCAs with k = 10

CA Size Previous Bound∗ OA,Size Percent triples

covered by OA

CA(3, 9, 3) 50 51 OA3(2, 9, 3),27 90.5

CA(3, 25, 5) 371 465 OA5(2, 25, 5),125 89.6

CA(3, 27, 3) 118 99 OA9(2, 27, 3),81 97.3

CA(3, 16, 4) 174 159 OA4(2, 16, 4),64 78.6

CA(3, 17, 4) 180 184 OA4(2, 17, 4),64 77.9

CA(3, 10, 5) 266 185 OA2(2, 10, 5),50 40.0

Table 12
Sizes for CAs built with OAs of higher index ∗Source: [3]

CA(t, k`, v) Size Previous CA(3, k, v),Size CA(3, `, v),Size Size of D Size of F

Bound∗

CA(3, 25, 4) 188 229 CA(3, 5, 4),64 CA(3, 5, 4),64 4 15

CA(3, 30, 4) 203 238 CA(3, 5, 4),64 CA(3, 6, 4) ,64 5 15

CA(3, 24, 6) 692 795 CA(3, 6, 6), 260 CA(3, 4, 6),216 6 36

CA(3, 36, 3) 109 ? CA(3, 4, 3) ,27 CA(3, 9, 3),50 3 8

Table 13
K’ary Roux. ∗ Source: [3]
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Matrices. In each of these cases we seed the annealing program with the OA

of higher index and then anneal the rest of the array. We include in the table
the percentage of triples covered by and the size of the OA prior to annealing.
In our experience if too many triples are covered before annealing occurs, the
best bound is not found. There seems to be a tradeoff in the tightness of the
structure used for seeding and the final covering array. We have listed the size
of the strength two orthogonal array and the percentage of triples that are
covered in this subset.

4.3 Constructions Using k’ary Roux

We applied the k’ary Roux construction to some covering arrays for sizes of
` > 2. Table 13 gives some of these results. This construction appears to do
well when the two smaller building blocks are themselves optimal. In the first
two entries we have used orthogonal arrays as ingredients. In each of these
entries we do not have to handle triples when σ1 = σ2. We have used the
augmented annealing program to build D and F by initializing them with
these triples. The sizes we found for these are listed in the table. For instance,
we can build a difference covering array of size DCA(4; 2, 5, 4) of size 4 instead
of 5 if we do not care about covering the zero differences. And we can create
a CA(2, 6, 4) of size 15 if we do not care about pairs with equal entries. This
saves us 15 rows in the final covering array.

Table 14 gives results of computations using simulated annealing for the ex-
istence of difference covering arrays. When two entries are given, the first is
for a DCA that (in addition) covers the zero difference, while the second does
not require the zero difference to be covered.

4.4 Arrays with No Known Algebraic Constructions

We close with some examples in which no combinatorial construction is avail-
able for one or more ingredients. The first example is a CA(3, 7, 7). We have
used annealing to create (2,1)-covering arrays and analogs of ordered designs.
We only improve slightly on the best bound found for this array from straight
annealing, but appear to improve on the computation time that is required to
solve this problem. The second example is an MCA(3, 664222). This array con-
tains a CA(3, 6, 6) but has four additional components. We have tried several
techniques to build this array. When we use straight annealing we found an
array of size 317, which is much larger than the best bound we have found for
the sub-array CA(3, 6, 6). Based on the experience reported in [6] we believe
that the hardest problem, that of the CA(3, 6, 6), dictates the size of this ar-
ray. When we used two partial covering arrays as in Method B, the best bound
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Sizes for DCA’s

with,without Zero Differences

k/q 3 4 5 6 7 8 9 10

3 3,2 5,4 5,4 7,6 7,6 9,8 9,8 11,10

4 4,3 5,4 5,4 7,6 7,6 9,8 10,9 11,10

5 5,4 5,4 5,4 8,7 7,6 9,8 10,9 12,11

6 5,4 6,5 7,6 8,7 7,6 10,9 11,10 12,11

7 5,4 6,5 7,6 8,7 7,6 10,9 11,11 13,12

8 5,4 6,5 8,7 8,7 9,8 10,9 12,11 14,13

9 5,4 7,6 8,7 9,8 9,8 12,11 12,12 14,13

10 5,4 7,6 8,7 9,8 10,9 12,11 13,12 15,14

Table 14
Table of Difference Covering Arrays with,without zero differences

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 7, 2 12 12

3, 7, 3 33 30

3, 7, 4 64 60

3, 7, 5 105 100

3, 7, 6 156 150

3, 7, 7 217 210

Table 15
Sizes for TOCA(3, k, v)s with k = 7

we found was 313. We have therefore tried seeding this array with solutions
for subproblems already found. We seed either the OD(3, 6, 6) of size 120 or
the CA(3, 6, 6) of size 263 and then anneal to complete the structure. Both
of these improve markedly upon the first two methods as shown in Table 16.
The smallest test suite we found used the CA(3, 6, 6) as a seed. This added
fewer than 10 rows to complete the missing coverage. This highlights the need
for the software tester to have knowledge to determine which method is best
for which problem.
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Covering Array Method Size

CA(3, 7, 7) Straight Annealing 552

CA(3, 7, 7) Partial Arrays 545

MCA(3, 664222) Straight Annealing 317

MCA(3, 664222) Partial Arrays 313

MCA(3, 664222) Seeded with OD(3, 6, 6) 283

MCA(3, 10, 664222) Seeded with CA(3, 6, 6) 272

Table 16
Sizes for covering arrays with no known combinatorial constructions

5 Conclusions

The construction of covering arrays is a challenging combinatorial and com-
putational problem. Their real and potential applications in the design of soft-
ware test suites necessitate reasonably fast and reasonably accurate techniques
for producing large covering arrays. Computational search techniques, while
general, degrade in speed and accuracy as problem size increases. Combinato-
rial techniques suffer lack of generality despite offering the promise of fast and
accurate solutions in specfic instances. We have therefore proposed a frame-
work for combining combinatorial constructions with heuristic search, and
examined a specific instantiation of this, augmented annealing. The covering
arrays produced illustrate the potential of this approach, demonstrating that
a combinatorial construction can be used as a master to decompose a search
problem so that much smaller ingredient designs can be found. Perhaps what
distinguishes this from the majority of existing recursive constructions is that
we are not concerned primarily with finding a master for which the ingredi-
ents needed are themselves well-understood combinatorial objects. Augmented
annealing can be viewed as a first step in designing a tool to exploit combi-
natorial constructions along with heuristic search to produce covering arrays
for the variety of parameters arising in practice.
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