
On Forward Checking for Non-binaryConstraint Satisfaction ?Christian Bessière1, Pedro Meseguer2, Eugene C. Freuder3, and Javier Larrosa41 LIRMM-CNRS, 161 rue Ada, 34392 Montpellier, Francebessiere@lirmm.fr,2 IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spainpedro@iiia.csic.es,3 University of New Hampshire, Durham, NH 03824, USAecf@cs.unh.edu,4 Dep. LSI, UPC, Jordi Girona Salgado, 1-3, 08034 Barcelona, Spainlarrosa@lsi.upc.esAbstract. Solving non-binary constraint satisfaction problems, a cru-cial challenge for the next years, can be tackled in two di�erent ways:translating the non-binary problem into an equivalent binary one, or ex-tending binary search algorithms to solve directly the original problem.The latter option raises some issues when we want to extend de�nitionswritten for the binary case. This paper focuses on the well-known for-ward checking algorithm, and shows that it can be generalized to severalnon-binary versions, all �tting its binary de�nition. The classical version,proposed by Van Hentenryck, is only one of these generalizations.1 IntroductionUp to now, most of the research done in constraint satisfaction assumes that con-straint problems can be exclusively formulated in terms of binary constraints.While many academic problems (n-queens, zebra, etc.) �t this condition, manyreal problems include non-binary constraints. It is well known the equivalencebetween binary and non-binary formulations [8]. Theoretically, this equivalencesolves the issue of algorithms for non-binary problems. In practice, however,it presents serious drawbacks concerning spatial and temporal requirements,which often make it inapplicable. The translation process generates new vari-ables, which may have very large domains, causing extra memory requirementsfor algorithms. In some cases, solving the binary formulation can be very ine�-cient [1]. In any case, this forced binarization generates unnatural formulations,which cause extra di�culties for constraint solver interfaces with human users.An alternative approach consists in extending binary algorithms to non-binary versions, able to solve non-binary problems in their original formulations.? P. Meseguer and J. Larrosa were supported by an Integrated Action �nanced by theGeneralitat de Catalunya, and by the Spanish CICYT project TIC96-0721-C02-02,C. Bessière was supported by an �action CNRS/NSF� under Grant no. 0690, andE.C. Freuder by the National Science Foundation under Grant No. IRI-9504316.

This approach eliminates the translation process and its drawbacks, but it raisesother issues, among which how a binary algorithm is generalized is a centralone. For some algorithms, like backtracking or MAC, this extension presentsno conceptual di�culties: their binary de�nitions allow only one possible non-binary generalization. For other algorithms, like forward checking (FC), severalgeneralizations are possible.In this paper, we study how the popular FC algorithm can be extended to con-sider non-binary constraints. We present di�erent generalizations, all collapsingto the standard version in the binary case. Our intention is mainly conceptual,trying to draw a clear picture of the di�erent options for non-binary FC. Wealso provide some experimental results to initially assess the performance of theproposed algorithms with respect to other non-binary FC algorithms previouslypresented.This paper is organized as follows. In Section 2, we present basic conceptsused in the rest of the paper. In Section 3, we show the di�erent ways in whichbinary FC can be generalized into non-binary versions. In Section 4, we provideproperties and analysis of these generalizations, relating them to the algorithmFC+ [1]. In Section 5, we provide experimental results of the proposed algorithmson random ternary problems. Finally, Section 6 contains some conclusions anddirections for further research.2 PreliminariesA �nite constraint network CN is de�ned as a set of n variables X = fx1; : : : ; xng,a current domain D(xi) of possible values for each variable xi, and a set C ofconstraints among variables. A constraint cj on the ordered set of variablesvar(cj) = (xj1 ; : : : ; xjr(j)) speci�es the relation rel(cj) of the allowed combina-tions of values for the variables in var(cj). rel(cj) is a subset of D0(xj1)� � � � �D0(xjr(j)), whereD0(xi) is the initial domain of xi. (The de�nition of a constraintdoes not depend on the current domains.) An element ofD0(xj1)�� � ��D0(xjr(j))is called a tuple on var(cj). An element of D(xj1)�� � ��D(xjr(j)) is called a validtuple on var(cj). We introduce the notions of initial and current domains to ex-plicitly di�erentiate the initial network, CN 0, from a network CN , obtained ata given node of a tree search after some operations (instantiations and/or �lter-ing). The tuple IP on the ordered set of past variables P represents the sequenceof instantiations performed to reach a given node. The set X n P of the futurevariables is denoted by F . The tuple IP on P is said to be consistent i� for allc such that var(c) � P , IP satis�es c.A value a for variable x is consistent with a constraint c i� x =2 var(c), orthere exists a valid tuple in rel(c) with value a for x. A variable x is consistentwith a constraint c i� D(x) is not empty and all its values are consistent withc. A constraint c is arc consistent i� for all x 2 var(c), x is consistent with c. Aset of constraints C is arc consistent i� all its constraints are arc consistent [6,7].

Let C = fc1; : : : ; ckg be a set of constraints. We will denote by AC(C) theprocedure which enforces arc consistency on the set C.1 Given an arbitraryordering of constraints c1; : : : ; ck, we say that AC is applied on each constraintin one pass (denoted by AC(fc1g); : : : ; AC(fckg)) when AC is executed onceon each individual constraint following the constraint ordering. We will denoteby �x2SD(x) the Cartesian product of the domains of the variables in S. Let� be a tuple on the set of variables S. The projection of � on a subset S0 of S,denoted by �[S0], is the restriction of � to the variables of S0. The projectionc[S0] of the constraint c on the subset S0 of var(c) is a constraint de�ned byvar(c[S0]) = S0, and rel(c[S0]) = ft[S0]=t 2 rel(c)g. The join of � and a relationrel(c) on var(c), denoted by � 1 rel(c), is the set ft=t is a tuple on S [var(c),and t[var(c)] 2 rel(c), and t[S] = �g.3 From Binary to Non-binary FCFC (from now on, bFC) was de�ned in [4] for binary constraint networks. Theydescribed bFC as an algorithm pursuing this condition at each node,there is no future unit having any of its labels inconsistent with any pastunit-label pairswhere unit stands for variable, and label for value. Values in future domains areremoved to achieve this condition, and if a future domain becomes empty, bFCbacktracks. This condition is equivalent to require that the set Cbp;f , composedof constraints connecting one past and one future variable, is arc consistent. Todo this, it is enough performing arc consistency on the set Cbc;f of constraintsinvolving the current and a future variable, each time a new current variableis assigned (Proposition 2, Section 4.1). In addition, arc consistency on this setcan be achieved by computing arc consistency on each constraint in one singlepass (Corollary 1, Section 4.1). With this strategy, after assigning the currentvariable we have,AC(Cbp;f) = AC(Cbc;f) = AC(fc1g); : : : ; AC(fcqg) (�)where ci 2 Cbc;f and jCbc;f j = q. So, bFC works as follows,bFC: After assigning the current variable, apply arc consistency on each con-straint of Cbc;f in one pass. If success (i.e., no empty domain detected), con-tinue with a new variable, otherwise backtrack.How can the FC strategy be extended for non-binary constraints? It seemsreasonable to achieve arc consistency (the same level of consistency as bFC)1 Abusing notation, we will also denote by AC(C) the set of values removed by theprocedure AC(C).

on a set of constraints involving past and future variables. In the binary case,there is only one option for such a set: constraints connecting one past variable(the current variable) and one future variable. In the non-binary case, there aredi�erent alternatives. We analyze the following ones,1. Constraints involving at least one past variable and at least one future vari-able;2. Constraints or constraint projections involving at least one past variable andexactly one future variable;3. Constraints involving at least one past variable and exactly one future vari-able.Considering option (1), we de�ne the set Cnp;f of the constraints involving atleast one past variable and at least one future variable, and the set Cnc;f composedof constraints involving the current variable and at least one future variable. Thebig di�erence with the binary case is that, in these sets, we have to deal withpartially instantiated constraints, with more than one uninstantiated variable.In this situation, the equivalences of (�) no longer hold for the non-binary case,that is, AC(Cnp;f) 6= AC(Cnc;f) 6= AC(fc1g); : : : ; AC(fcqg) (�)where ci 2 Cnc;f and jCnc;f j = q. Then, we have di�erent alternatives, dependingon the set of constraints considered (Cnp;f or Cnc;f) and whether arc consistencyis achieved on the whole set, or applied on each constraint one by one. They arethe following,nFC5: After assigning the current variable, make the set Cnp;f arc consistent. Ifsuccess, continue with a new variable, otherwise backtrack.nFC4: After assigning the current variable, apply arc consistency on each con-straint of Cnp;f in one pass. If success, continue with a new variable, otherwisebacktrack.nFC3: After assigning the current variable, make the set Cnc;f arc consistent. Ifsuccess, continue with a new variable, otherwise backtrack.nFC2: After assigning the current variable, apply arc consistency on each con-straint of Cnc;f in one pass. If success, continue with a new variable, otherwisebacktrack.Regarding options (2) and (3), we de�ne the set Cnp;1 of the constraints in-volving at least one past variable and exactly one future variable, and the set Cnc;1of the constraints involving the current variable and exactly one future variable.Analogously, we de�ne the set CPnp;1 of the constraint projections2 involving atleast one past variable and exactly one future variable, and the set CPnc;1 of theconstraint projections involving the current variable and exactly one future vari-able. Both cases are concerned with the following generalization of (�) (provedin Section 4.1), stating that after assigning the current variable we have,AC(Cnp;1) = AC(Cnc;1) = AC(fc1g); : : : ; AC(fcqg) ()2 A constraint projection is computed from the constraint de�nition which involvesinitial domains.

X = fx; y; z; u; v; wg, every domain is fa; b; cgc1 c2 c3x y z u v w x y wa a a a a a a a aa b c a b b a b ca c b c c cAssign Alg. Action(x; a) nFC0 nonenFC1 AC(fc1[x; y]g); AC(fc1[x; z]g); AC(fc3[x; y]g); AC(fc3[x;w]g)nFC2 AC(fc1g); AC(fc3g)nFC3 AC(fc1; c3g)nFC4 AC(fc1g); AC(fc3g)nFC5 AC(fc1; c3g)(u; a) nFC0 nonenFC1 AC(fc2[u; v]g); AC(fc2[u;w]g)nFC2 AC(fc2g)nFC3 AC(fc2g)nFC4 AC(fc1g); AC(fc2g); AC(fc3g)nFC5 AC(fc1; c2; c3g)(x; a) nFC0 nFC1 nFC2 nFC3 nFC4 nFC5D(x) a a a a a aD(y) a; b; c a; b a; b a; b a; b a; bD(z) a; b; c a; b; c a; b; c a; c a; b; c a; cD(u) a; b; c a; b; c a; b; c a; b; c a; b; c a; b; cD(v) a; b; c a; b; c a; b; c a; b; c a; b; c a; b; cD(w) a; b; c a; c a; c a; c a; c a; c(u; a) nFC0 nFC1 nFC2 nFC3 nFC4 nFC5D(x) a a a a a aD(y) a; b; c a; b a; b a; b a aD(z) a; b; c a; b; c a; b; c a; c a; c aD(u) a a a a a aD(v) a; b; c a; b a a a aD(w) a; b; c a a a a aFig. 1. A simple problem and the �ltering caused by the six algorithms, after the as-signments (x; a) and (u; a).where ci 2 Cnc;1 and jCnc;1j = q. As a result, only one alternative exists for eachof the options (2) and (3), and they are the following,nFC1: ([5]) After assigning the current variable, apply arc consistency on eachconstraint of Cnc;1[CPnc;1 in one pass. If success, continue with a new variable,otherwise backtrack.nFC0: ([10]) After assigning the current variable, apply arc consistency on eachconstraint of Cnc;1 in one pass. If success, continue with a new variable, oth-erwise backtrack.To illustrate the di�erences between the six proposed algorithms, a simpleexample is presented in Figure 1. It is composed of 6 variables fx; y; z; u; v; wg,sharing the same domain fa; b; cg, and subject to three ternary constraints,c1(x; y; z), c2(u; v; w) and c3(x; y; w). After the assignment (x; a), none of theconstraints have two instantiated variables. Therefore, nFC0 does no �ltering.

nFC1 applies arc consistency on the constraint projections of c1 and c3 on thesubsets fx; yg, fx; zg and fx;wg, removing c from D(y) and b from D(w). nFC2applies arc consistency on c1 and later on c3, pruning the same values as nFC1.Notice that if we consider these constraints in a di�erent order, the �ltering willbe di�erent. nFC3 achieves arc consistency on the subset fc1; c3g, which causesthe �ltering of nFC2 plus the removal of b from D(z). Given that x is the �rstinstantiated variable, nFC4 applies arc consistency on the same constraints asnFC2, and it causes the same �ltering. For the same reason, nFC5 performs thesame �ltering as nFC3.After the assignment (u; a), none of the constraints have two instantiatedvariables. So, nFC0 does no �ltering. nFC1 applies arc consistency on the con-straint projections of c1 on the subsets fu; vg and fu;wg, removing c from D(v)and c from D(w). nFC2 applies arc consistency on c2, and it removes b and cfrom D(v) and c from D(w). nFC3 achieves arc consistency on the subset fc2g,thus causing the same �ltering as nFC2 (di�erences in D(z) come from the pre-vious assignment). nFC4 applies arc consistency on the constraints c1, c2 andc3, removing b from D(y) and D(z), b and c from D(v) and c from D(w). nFC5achieves arc consistency on the whole constraint set. It removes b from D(y), cfrom D(z), b and c from D(v) and c from D(w).4 Formal Results on nFC4.1 PropertiesIn the next results, we prove the equivalences of () used in Section 3.Proposition 1 Let c be a constraint such that all its variables but one are in-stantiated. If c is made arc consistent, it remains arc consistent after achievingarc consistency on any other problem constraint.Proof. Let ~c be another constraint sharing an uninstantiated variable xj withc. If ~c is made arc consistent after c, this may cause further �ltering in D(xj)but c will remain arc consistent since all remaining values in D(xj) are alreadyconsistent with c. 2Corollary 1 Let C be a set of constraints such that all their variables but oneare instantiated. Achieving arc consistency on C is equivalent to make each ofits constraints arc consistent in one pass.Proposition 2 Let P be the ordered set of past variables. Let Cp;1 be the set ofconstraints involving at least one past variable and exactly one future variable.If each time a variable of P was assigned, the set Cc;1 of constraints involvingthat variable and one future variable was made arc consistent, the set Cp;1 is arcconsistent.

Proof. Let us assume that Cc;1 has been made arc consistent after assigningeach variable in P . If Cp;1 is not arc consistent, this means that there is at leastone of its constraints c which is not arc consistent. Let xk be the last assignedvariable in var(c). Because of Proposition 1 this is in contradiction with theassumption that it was made arc consistent after assigning xk. Therefore, Cp;1is arc consistent. 2Regarding the correctness of the proposed algorithms, we have to show thatthey are sound (they �nd only solutions), complete (�nd all solutions) and ter-minate. All algorithms follow a depth-�rst strategy with chronological back-tracking, so it is clear that all terminate. Then, we have to show soundness andcompleteness.Proposition 3 Any nFCi (i:{0,. . . ,5}) is correct.Proof. Soundness. We prove that, after achieving the corresponding arc con-sistency condition, the tuple IP of past variables reached by any algorithm isconsistent. When this tuple includes all variables, we have a solution. The setsof constraints to be made arc consistent by the proposed algorithms all includethe set Cp;1 of nFC0. By Proposition 1, we know that once those constraints aremade arc consistent, they remain arc consistent after processing any other con-straint. So, proving this result for nFC0 makes it valid for any nFCi algorithm(i:{0,. . . ,5}). If IP of nFC0 is inconsistent then at least one constraint c involv-ing only variables in P is inconsistent. Let xi and xj be the two last assignedvariables in var(c), in this order. After assigning xi, c was in Cp;1 which wasmade arc consistent. Assigning xj a value inconsistent with c is in contradictionwith the assumption that Cp;1 was made arc consistent. So, IP is consistent.Completeness. We show completeness for nFC5, proofs for other algorithmsare similar. Given a variable ordering, it is clear that nFC5 visits all successorsof nodes compatible with such ordering where the set Cnp;f can be made arcconsistent. Let us suppose that there is a node solution, IP , where all variablesare past. If xn is the last variable to be instantiated, the parent node IPnfxngis a node where Cnp;f can be made arc consistent. By induction, nFC5 visits thenode solution IP . 2At a given node k, we de�ne the �ltering caused by an algorithm nFCi,�(nFCi; k), as the set of pairs (x; a) where a is a value removed from the futuredomain D(x) by the corresponding arc consistency condition.Proposition 4 At any node k these relations hold,1. �(nFC0; k) � �(nFC1; k) � �(nFC2; k)2. �(nFC2; k) � �(nFC3; k) � �(nFC5; k)3. �(nFC2; k) � �(nFC4; k) � �(nFC5; k)Proof. Regarding nFC0 and nFC1, the relation is a direct consequence of Cnc;1 �Cnc;1[CPnc;1. Regarding nFC1 and nFC2, constraint projections are semanticallyincluded in Cnc;f . Regarding nFC2 and nFC3, applying arc consistency on eachconstraint of Cnc;f in one pass is part of the process of achieving arc consistency

on the set Cnc;f . Regarding nFC3 and nFC5, Cnc;f � Cnp;f . Regarding nFC2 andnFC4, Cnc;f � Cnp;f . Regarding nFC4 and nFC5, applying arc consistency on eachconstraint of Cnp;f in one pass is part of the process of achieving arc consistencyon the set Cnp;f . 2Regarding nFC3 and nFC4, their �lterings are incomparable as can be seen inexample of Figure 1. (After assigning (x; a), nFC3 �ltering is stronger than nFC4�ltering; the opposite occurs after assigning (u; a).) A direct consequence of thisresult involves the set of nodes visited by each algorithm. De�ning nodes(nFCi)as the set of nodes visited by nFCi until �nding a solution,Corollary 2 Given a constraint network with a �xed variable and value order-ing, the following relations hold,1. nodes(nFC2) � nodes(nFC1) � nodes(nFC0)2. nodes(nFC5) � nodes(nFC3) � nodes(nFC2)3. nodes(nFC5) � nodes(nFC4) � nodes(nFC2)4.2 Complexity AnalysisIn this subsection, we give upper bounds to the number of constraint checksthe di�erent nFC algorithms perform at one node. First, let us give an upperbound to the number of checks needed to make a variable xj consistent witha given constraint c. For each value b in D(xj), we have to �nd a subtuple �in �x2var(c)nfxjgD(x) such that � extended to (xj ; b) is allowed by c. So, thenumber of checks needed to make xj consistent with c is in O(d � jV j), whereV = �x2var(c)nfxjgD(x), and d denotes the maximal size of a domain.In nFC0, a constraint c is made arc consistent at a given node i� var(c)contains only one future variable. Thus, enforcing arc consistency on c is in O(d)since jV j = 1. (Domains of past variables are singletons.) Therefore, the numberof checks performed by nFC0 at one node is in O(jCnc;1j � d). For the same reasonthe number of checks performed by nFC1 at one node is in O(jCnc;1[CPnc;1j� d), as-suming that the constraint projections have been built in a preprocessing phase.In nFC2 and nFC4, jV j is bounded above by djvar(c)\F j�1 for a given con-straint c, and a given future variable xj in var(c). Thus, making xj consistentwith c is bounded above by d � djvar(c)\F j�1, and enforcing arc consistency on cis in O(jvar(c)\F j �djvar(c)\F j) since there are jvar(c)\F j variables to make arcconsistent with c. So, the number of checks performed at one node is in O(jCnc;f j �jvar(c)\F j � djvar(c)\F j) for nFC2, and in O(jCnp;f j � jvar(c)\F j � djvar(c)\F j) fornFC4.At a given node in the search, nFC3 (resp. nFC5) deals with the same set ofconstraints as nFC2 (resp. nFC4). The di�erence comes from the propagationsnFC3 (resp. nFC5) performs in order to reach an arc consistent state on Cnc;f(resp. Cnp;f), whereas nFC2 (resp. nFC4) performs �one pass� arc consistencyon them. Thus, if we suppose that arc consistency is achieved by an optimalalgorithm, such as GAC4 [7] or GAC-schema [2], the upper bound in the numberof constraint checks performed by nFC3 (resp. nFC5) at a given node is the same

as nFC2 (resp. nFC4) bound. (With an AC3-like algorithm [6], nFC3 and nFC5have a greater upper bound.)4.3 FC+ and nFC1The hidden variable representation is a general method for converting a non-binary constraint network into an equivalent binary one [3, 8]. In this represen-tation, the problem has two sets of variables: the set of the ordinary variables,those of the original non-binary network, with their original domain of values,plus a set of hidden variables, or h-variables. There is a h-variable hc for eachconstraint c of the original network, with rel(c) as initial domain (i.e., the tuplesallowed by c become the values in D0(hc)). A h-variable hc is involved in a bi-nary constraint with each of the ordinary variables x in var(c). Such a constraintallows the set of pairs f(a; t)=a 2 D0(x); t 2 D0(hc); t[x] = ag.FC+ is an algorithm designed to run on the hidden representation [1]. Itoperates like bFC except that when the domain of a h-variable is pruned, FC+removes from adjacent ordinary variables those values whose support has beenlost. Besides, FC+ never instantiates h-variables. When all its neighboring (or-dinary) variables are instantiated, the domain of a h-variable is already reducedto one value. Its assignment is, in a way, implicit. Therefore, there is a directcorrespondence between the search space of FC+ and any nFC. The followingproposition shows that FC+ is equivalent to nFC1.Proposition 5 Given any non-binary constraint network, nFC1 visits exactlythe same nodes as FC+ applied to the hidden representation, provided that bothalgorithms use the same variable and value orderings.Proof. Because of the algorithmic description of FC+, we know that h-variablesmay only have their domain pruned by the bFC look ahead. An arbitrary h-domain, D(hc), may only be pruned if P \ var(c) 6= ;, and D(hc) = f(IP 1rel(c))[var(c)]g. Domains of ordinary variables may only be pruned by the extralook ahead of FC+. At a given node, value b for a future variable xj belongs toD(xj) i� it still has support from all its adjacent h-variables that may have beenpruned. That is, 8xj 2 F , b 2 D(xj) i� 8c s.t. var(c) \ P 6= ; and xj 2 var(c),b 2 D(hc)[xj] = ((IP 1 rel(c))[var(c)])[xj] = (IP 1 rel(c))[xj]. Now, becauseof its de�nition, we know that at a given node nFC1 ensures that value b fora future variable xj belongs to D(xj) i� it is consistent with the projectionsrel(c)[var(c) \ P [fxjg] for all the constraints c such that var(c) \ P 6= ;and xj 2 var(c). That is, 8xj 2 F , b 2 D(xj) i� 8c s.t. var(c) \ P 6= ; andxj 2 var(c), b 2 (IP 1 (rel(c)[var(c) \ P [fxjg]))[xj] = (IP 1 rel(c))[var(c) \P [fxjg][xj] = (IP 1 rel(c))[xj], which is exactly what we found for FC+. SinceFC+ and nFC1 prune exactly the same values on the ordinary variables at agiven node, we have the proof. 2

5 Experimental ResultsWe have performed some experiments to preliminary assess the potential ofthe proposed algorithms. In our experiments we have used random problemsextending the well known four-parameter binary model [9] to ternary problemsas follows. A ternary random problem is de�ned by four parameters hn;m; p1; p2iwhere n is the number of variables,m is the cardinality of their domains, p1 is theproblem connectivity as the ratio between existing constraints and the maximumnumber of possible constraints (the problem has exactly p1n(n � 1)(n � 2)=6constraints), and p2 is the constraint tightness as the proportion of forbiddenvalue triplets between three constrained variables (the number of forbidden valuetriplets is exactly T = p2m3). The constrained variables and their nogoods arerandomly selected following a uniform distribution.We performed experiments on the following classes of problems:(a) h10; 10; 100=120; p2i,(b) h30; 6; 75=4060; p2i,(c) h75; 5; 120=67525; p2i.Regarding connectivity, (a) is a dense class while (b) and (c) are sparse classes.The complexity peak location appears in (a) at low tightness, in (b) at mediumtightness, and in (c) at high tightness.We solved 50 instances for each set of parameters, using nFC0, nFC1, FC+,nFC2, nFC3, nFC4, and nFC5,3 with the heuristic minimum domain sizedegree forvariable selection and lexicographic value selection. Figure 2 shows the meannumber of visited nodes to solve each problem class. Only the complexity peakregion is shown. With no surprise, it is in agreement with Corollary 2, whichestablishes that nFC0 is the algorithm visiting the most nodes while nFC5 is theone that visits the least nodes. Because of Proposition 5, nFC1 and FC+ visitthe same nodes. The new information is about the relation between nFC3 andnFC4, algorithms unordered by Corollary 2. Consistently in the three problemclasses, nFC4 visits less nodes than nFC3, which implies that nFC4 performsmore pruning than nFC3.Figures 3 and 4 show the average computational e�ort4 (as mean numberof consistency checks and mean CPU time) required. We observe that, for easyproblems (with peak at low tightness) the winner is nFC0, the algorithm thatperforms the simplest lookahead. For this class of problems, sophisticated formsof lookahead do not pay-o�: the proposed algorithms nFC1 to nFC5 are 1.8 to 4.8times slower than nFC0 at the peak. FC+ on the hidden representation is ordersof magnitude slower. For problems with the peak at medium tightness, no singlealgorithm clearly outperforms the others. nFC0, nFC1, nFC2, and nFC5 are veryclose. nFC3 and nFC4 are slightly worse. The bad behavior of FC+ is con�rmed.For di�cult problems with the peak located at high tightness, the proposed3 In nFC3 and nFC5, the technique used to achieve arc consistency on a set of con-straints is a brute force non optimal GAC3-based algorithm.4 This e�ort includes the preprocessing phase for nFC1 and the conversion into thehidden representation for FC+.

10

100

1000

10000

160 180 200 220 240 260 280 300

m
ea

n
nu

m
be

r
of

 n
od

es

T (number of forbidden tuples)

<10,10,100/120,T/1000>

nFC0
FC+

nFC1
nFC2
nFC3
nFC4
nFC5

10

100

1000

10000

100000

80 90 100 110 120 130 140

m
ea

n
nu

m
be

r
of

 n
od

es

T (number of forbidden tuples)

<30,6,75/4060,T/216>

nFC0
FC+

nFC1
nFC2
nFC3
nFC4
nFC5

10

100

1000

10000

100000

1e+06

1e+07

1e+08

60 65 70 75 80 85 90 95

m
ea

n
nu

m
be

r
of

 n
od

es

T (number of forbidden tuples)

<75,5,120/67525,T/125>

nFC0
FC+

nFC1
nFC2
nFC3
nFC4
nFC5

Fig. 2. Average number of visited nodes for three classes of ternary random problems.

1000

10000

100000

1e+06

1e+07

1e+08

160 180 200 220 240 260 280 300

m
ea

n
nu

m
be

r
of

 c
ck

s

T (number of forbidden tuples)

<10,10,100/120,T/1000>

FC+
nFC4
nFC5
nFC3
nFC1
nFC2
nFC0

1000

10000

100000

1e+06

1e+07

1e+08

80 90 100 110 120 130 140

m
ea

n
nu

m
be

r
of

 c
ck

s

T (number of forbidden tuples)

<30,6,75/4060,T/216>

FC+
nFC4
nFC3
nFC2
nFC1
nFC5
nFC0

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

60 65 70 75 80 85 90 95

m
ea

n
nu

m
be

r
of

 c
ck

s

T (number of forbidden tuples)

<75,5,120/67525,T/125>

FC+
nFC0
nFC4
nFC1
nFC3
nFC2
nFC5

Fig. 3. Average number of checks for three classes of ternary random problems.

0.01

0.1

1

10

100

160 180 200 220 240 260 280 300

m
ea

n
cp

u
tim

e
(in

 s
ec

.)

T (number of forbidden tuples)

<10,10,100/120,T/1000>

FC+
nFC5
nFC3
nFC4
nFC1
nFC2
nFC0

0.01

0.1

1

10

100

80 90 100 110 120 130 140

m
ea

n
cp

u
tim

e
(in

 s
ec

.)

T (number of forbidden tuples)

<30,6,75/4060,T/216>

FC+
nFC4
nFC3
nFC1
nFC0
nFC2
nFC5

0.01

0.1

1

10

100

1000

60 65 70 75 80 85 90 95

m
ea

n
cp

u
tim

e
(in

 s
ec

.)

T (number of forbidden tuples)

<75,5,120/67525,T/125>

nFC0
FC+

nFC1
nFC4
nFC3
nFC2
nFC5

Fig. 4. Average cpu time for three classes of ternary random problems.

algorithms nFC1 to nFC5 clearly outperform nFC0. Even FC+ performs betterthan nFC0. The winner is nFC5, the algorithm which performs the greatest e�ortper node, and causes the highest �ltering. It is 32 times faster than nFC0 at thepeak. The good behaviour of nFC4 in number of visited nodes has no translationin performance. However, nFC2 visiting more nodes than nFC4 is the secondbest algorithm in performance in the three problem classes. Considering FC+,it has the worst performance for loose and medium constraints, and it is thesecond worst (after nFC0) for tight constraints. Any of the proposed algorithmsoutperforms FC+ in the three problem classes.We can also point out some other noteworthy phenomena that are not vis-ible in the �gures reported here. First, on the problem classes presented there,nFC0 is the only algorithm that encountered an exceptionally hard problem,located in the satis�able region of the h75; 5; 120=67525; p2i class. Second, whenthe heuristic minimum domain size for variable selection is used instead ofminimum domain sizedegree , nFC0 becomes more frequently subject to thrashing, evenon problem sizes remaining very easy for the algorithms nFC1 to nFC5.6 Summary and ConclusionWe presented several possible generalizations of the FC algorithm to non-binaryconstraint networks. We studied their properties, and analyzed their complex-ities. We also compared these non-binary algorithms to the binary FC+ algo-rithm, which runs on the hidden conversion of non-binary networks.We provided initial empirical results on the performance of these algorithms.From them, we conclude that the proposed algorithms outperform existing ap-proaches on sparse problems with tight constraints. On easier problems, thebene�ts caused by their early lookahead do not outweigh the propagation e�ort.This unsurprising conclusion �ts the already known trade-o� between bene�tsand costs in constraint satisfaction. Nevertheless, more empirical studies areneeded to substantiate which of these algorithms are promising, and on whichconstraints they perform better. An ultimate goal could be to exhibit a crite-rion under which to decide when a constraint should be processed by the nFC0principle, and when it should be propagated with a more pruningful mechanism.The result would be a mixed algorithm, taking the best of both techniques.References1. F. Bacchus and P. van Beek. On the conversion between non-binary and binaryconstraint satisfaction problems. In Proceedings AAAI'98, pages 311�318, MadisonWI, 1998.2. C. Bessière and J.C. Régin. Arc consistency for general constraint networks: pre-liminary results. In Proceedings IJCAI'97, pages 398�404, Nagoya, Japan, 1997.3. R. Dechter. On the expressiveness of networks with hidden variables. In ProceedingsAAAI'90, pages 556�562, Boston MA, 1990.4. R.M. Haralick and G.L. Elliot. Increasing tree seach e�ciency for constraint sat-isfaction problems. Arti�cial Intelligence, 14:263�313, 1980.

5. J. Larrosa and P. Meseguer. Adding constraint projections in n-ary csp. In J.C.Régin and W. Nuijtens, editors, Proceedings of the ECAI'98 workshop on non-binary constraints, pages 41�48, Brighton, UK, 1998.6. A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI'77, pages 598�606, Cambridge MA, 1977.7. R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings ECAI'88,pages 651�656, Munchen, FRG, 1988.8. F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfactionproblems. In Proceedings ECAI'90, pages 550�556, Stockholm, Sweden, 1990.9. B. Smith. Phase transition and the mushy region in constraint satisfaction prob-lems. In Proceedings ECAI'94, pages 100�104, Amsterdam, The Netherlands, 1994.10. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,Cambridge, MA, 1989.

