
FOUNDATIONS OF
CONSTRAINT SATISFACTION

Edward Tsang
Department of Computer Science

University of Essex
Colchester
Essex, UK

Copyright 1996 by Edward Tsang

All rights reserved. No part of this book may be reproduced
in any form by photostat, microfilm, or any other means,
without written permission from the author.

Copyright 1993-95 by
Academic Press Limited

This book was first published by
Academic Press Limited in 1993 in

UK: 24-28 Oval Road, London NW1 7DX
USA: Sandiego, CA 92101

ISBN 0-12-701610-4

To Lorna

v

Preface

Many problems can be formulated as Constraint Satisfaction Problems (CSPs),
although researchers who are untrained in this field sometimes fail to recognize
them, and consequently, fail to make use of specialized techniques for solving them.
In recent years, constraint satisfaction has come to be seen as the core problem in
many applications, for example temporal reasoning, resource allocation, schedul-
ing. Its role in logic programming has also been recognized. The importance of con-
straint satisfaction is reflected by the abundance of publications made at recent
conferences such as IJCAI-89, AAAI-90, ECAI-92 and AAAI-92. A special vol-
ume of Artificial Intelligence was also dedicated to constraint reasoning in 1992
(Vol 58, Nos 1-3).

The scattering and lack of organization of material in the field of constraint satisfac-
tion, and the diversity of terminologies being used in different parts of the literature,
make this important topic more difficult to study than is necessary. One of the
objectives of this book is to consolidate the results of CSP research so far, and to
enable newcomers to the field to study this problem more easily. The aim here is to
organize and explain existing work in CSP, and to provide pointers to frontier
research in this field. This book is mainly about algorithms for solving CSPs.

The volume can be used as a reference by artificial intelligence researchers, or as a
textbook by students on advanced artificial intelligence courses. It should also help
knowledge engineers apply existing techniques to solve CSPs or problems which
embed CSPs. Most algorithms described in this book have been explained in pseudo
code, and sometimes illustrated with Prolog codes (to illustrate how the algorithms
could be implemented). Prolog has been chosen because, compared with other lan-
guages, one can show the logic of the algorithms more clearly. I have tried as much
as possible to stick to pure Prolog here, and avoid using non-logical constructs such
as assert and retract. The Edinburgh syntax has been adopted.

CSP is a growing research area, thus it has been hard to decide what material to
include in this book. I have decided to include work which I believe to be either fun-
damental or promising. Judgement has to be made, and it is inevitably subjective. It
is quite possible that important work, especially current research which I have not
been able to fully evaluate, have been mentioned too briefly, or completely missed
out.

An attempt has been made to make this book self-contained so that readers should
need to refer to as few other sources as possible. However, material which is too
lengthy to explain here, but which has been well documented elsewhere, has been
left out.

vi

Formal logic (mainly first order predicate calculus) is used in definitions to avoid
ambiguity. However, doing so leaves less room for error, therefore errors are inevi-
table. For them, I take full responsibility.

Edward Tsang
University of Essex, UK

vii

Acknowledgements

I am grateful to Jim Doran for bringing me into the topic of constraint satisfaction.
Sam Steel suggested me to write this book. Ray Turner and Nadim Obeid advised
me on a number of issues. Hans Guesgen and Joachim Hertzberg generously gave
me a copy of their book on this topic and discussed their work with me. Patrick
Prosser read an earlier draft of this book in detail, and gave me invaluable feedback.
Barbara Smith, Barry Crabtree and Andrew Davenport all spared their precious
time to read an earlier draft of this book. I would like to thank them all. My special
thanks goes to Alvin Kwan, who has read earlier versions of this book and had
lengthy discussions with me on many issues. The Department of Computer Science,
University of Essex, has provided me with a harmonious environment and a great
deal of support. Feedback from students who took my course on constraint satisfac-
tion has been useful. Andrew Carrick, Kate Brewin and Nigel Eyre made the publi-
cation of this book a relatively smooth exercise. Most importantly, I would like to
thank my wife Lorna. Without her support this book could never have been com-
pleted.

Table of contents

Preface v
Acknowledgements vii
Table of contents ix
Figures xv
Notations and abbreviations xix

Chapter 1 Introduction 1
1.1 What is a constraint satisfaction problem? 1

1.1.1 Example 1 —The N-queens problem 1
1.1.2 Example 2 — The car sequencing problem 3

1.2 Formal Definition of the CSP 5
1.2.1 Definitions of domain and labels 5
1.2.2 Definitions of constraints 7
1.2.3 Definitions of satisfiability 8
1.2.4 Formal definition of constraint satisfaction problems 9
1.2.5 Task in a CSP 10
1.2.6 Remarks on the definition of CSPs 10

1.3 Constraint Representation and Binary CSPs 10
1.4 Graph-related Concepts 12
1.5 Examples and Applications of CSPs 17

1.5.1 The N-queens problem 17
1.5.2 The graph colouring problem 19
1.5.3 The scene labelling problem 21
1.5.4 Temporal reasoning 24
1.5.5 Resource allocation in AI planning and scheduling 25
1.5.6 Graph matching 26
1.5.7 Other applications 26

1.6 Constraint Programming 27
1.7 Structure Of Subsequent Chapters 28
1.8 Bibliographical Remarks 29

Chapter 2 CSP solving — An overview 31
2.1 Introduction 31

2.1.1 Soundness and completeness of algorithms 31
2.1.2 Domain specific vs. general methods 32

2.2 Problem Reduction 32

x

2.2.1 Equivalence 32
2.2.2 Reduction of a problem 33
2.2.3 Minimal problems 34

2.3 Searching For Solution Tuples 35
2.3.1 Simple backtracking 36
2.3.2 Search space of CSPs 38
2.3.3 General characteristics of CSP’s search space 40
2.3.4 Combining problem reduction and search 41
2.3.5 Choice points in searching 42
2.3.6 Backtrack-free search 43

2.4 Solution Synthesis 44
2.5 Characteristics of Individual CSPs 46

2.5.1 Number of solutions required 46
2.5.2 Problem size 47
2.5.3 Types of variables and constraints 47
2.5.4 Structure of the constraint graph in binary-

constraint-problems 47
2.5.5 Tightness of a problem 48
2.5.6 Quality of solutions 49
2.5.7 Partial solutions 50

2.6 Summary 51
2.7 Bibliographical Remarks 52

Chapter 3 Fundamental concepts in the CSP 53
3.1 Introduction 53
3.2 Concepts Concerning Satisfiability and Consistency 54

3.2.1 Definition of satisfiability 54
3.2.2 Definition of k-consistency 55
3.2.3 Definition of node- and arc-consistency 57
3.2.4 Definition of path-consistency 59
3.2.5 Refinement of PC 60
3.2.6 Directional arc- and path-consistency 63

3.3 Relating Consistency to Satisfiability 64
3.4 (i, j)-consistency 68
3.5 Redundancy of Constraints 69
3.6 More Graph-related Concepts 70
3.7 Discussion and Summary 76
3.8 Bibliographical Remarks 76

xi

Chapter 4 Problem reduction 79
4.1 Introduction 79
4.2 Node and Arc-consistency Achieving Algorithms 80

4.2.1 Achieving NC 80
4.2.2 A naive algorithm for achieving AC 81
4.2.3 Improved AC achievement algorithms 83
4.2.4 AC-4, an optimal algorithm for achieving AC 84
4.2.5 Achieving DAC 88

4.3 Path-consistency Achievement Algorithms 90
4.3.1 Relations composition 91
4.3.2 PC-1, a naive PC Algorithm 92
4.3.3 PC-2, an improvement over PC-1 93
4.3.4 Further improvement of PC achievement algorithms 95
4.3.5 GAC4: problem reduction for general CSPs 99
4.3.6 Achieving DPC 99

4.4 Post-conditions of PC Algorithms 101
4.5 Algorithm for Achieving k-consistency 102
4.6 Adaptive-consistency 105
4.7 Parallel/Distributed Consistency Achievement 110

4.7.1 A connectionist approach to AC achievement 110
4.7.2 Extended parallel arc-consistency 112
4.7.3 Intractability of parallel consistency 115

4.8 Summary 115
4.9 Bibliographical Remarks 117

Chapter 5 Basic search strategies for solving CSPs 119
5.1 Introduction 119
5.2 General Search Strategies 120

5.2.1 Chronological backtracking 120
5.2.2 Iterative broadening 121

5.3 Lookahead Strategies 124
5.3.1 Forward Checking 124
5.3.2 The Directional AC-Lookahead algorithm 130
5.3.3 The AC-Lookahead algorithm 133
5.3.4 Remarks on lookahead algorithms 136

5.4 Gather-information-while-searching Strategies 136
5.4.1 Dependency directed backtracking 137
5.4.2 Learning nogood compound labels algorithms 143

xii

5.4.3 Backchecking and Backmarking 147
5.5 Hybrid Algorithms and Truth Maintenance 151
5.6 Comparison of Algorithms 152
5.7 Summary 155
5.8 Bibliographical Remarks 155

Chapter 6 Search orders in CSPs 157
6.1 Introduction 157
6.2 Ordering of Variables in Searching 157

6.2.1 The Minimal Width Ordering Heuristic 158
6.2.2 The Minimal Bandwidth Ordering Heuristic 166
6.2.3 The Fail First Principle 178
6.2.4 The maximum cardinality ordering 179
6.2.5 Finding the next variable to label 180

6.3 Ordering of Values in Searching 184
6.3.1 Rationale behind values ordering 184
6.3.2 The min-conflict heuristic and informed backtrack 184
6.3.3 Implementation of Informed-Backtrack 187

6.4 Ordering of Inferences in Searching 187
6.5 Summary 187
6.6 Bibliographical Remarks 188

Chapter 7 Exploitation of problem-specific features 189
7.1 Introduction 189
7.2 Problem Decomposition 190
7.3 Recognition and Searching in k-trees 192

7.3.1 “Easy problems”: CSPs which constraint graphs
are trees 192

7.3.2 Searching in problems which constraint graphs are
k-trees 194

7.4 Problem Reduction by Removing Redundant Constraints 200
7.5 Cycle-cutsets, Stable Sets and Pseudo_Tree_Search 201

7.5.1 The cycle-cutset method 201
7.5.2 Stable sets 207
7.5.3 Pseudo-tree search 209

7.6 The Tree-clustering Method 212
7.6.1 Generation of dual problems 212
7.6.2 Addition and removal of redundant constraints 214

xiii

7.6.3 Overview of the tree-clustering method 216
7.6.4 Generating chordal primal graphs 222
7.6.5 Finding maximum cliques 224
7.6.6 Forming join-trees 231
7.6.7 The tree-clustering procedure 234

7.7 j-width and Backtrack-bounded Search 235
7.7.1 Definition of j-width 235
7.7.2 Achieving backtrack-bounded search 239

7.8 CSPs with Binary Numerical Constraints 240
7.8.1 Motivation 241
7.8.2 The AnalyseLongestPaths algorithm 243

7.9 Summary 245
7.10 Bibliographical Remarks 250

Chapter 8 Stochastic search methods for CSPs 253
8.1 Introduction 253
8.2 Hill-climbing 254

8.2.1 General hill-climbing algorithms 254
8.2.2 The heuristic repair method 256
8.2.3 A gradient-based conflict minimization hill-

climbing heuristic 258
8.3 Connectionist Approach 261

8.3.1 Overview of problem solving using connectionist
approaches 261

8.3.2 GENET, a connectionist approach to the CSP 261
8.3.3 Completeness of GENET 266
8.3.4 Performance of GENET 267

8.4 Summary 268
8.5 Bibliographical Remarks 269

Chapter 9 Solution synthesis 271
9.1 Introduction 271
9.2 Freuder’s Solution Synthesis Algorithm 272

9.2.1 Constraints propagation in Freuder’s algorithm 273
9.2.2 Algorithm Synthesis 274
9.2.3 Example of running Freuder’s Algorithm 276
9.2.4 Implementation of Freuder’s synthesis algorithm 279

9.3 Seidel’s Invasion Algorithm 280

xiv

9.3.1 Definitions and Data Structure 280
9.3.2 The invasion algorithm 282
9.3.3 Complexity of invasion and minimal bandwidth

ordering 283
9.3.4 Example illustrating the invasion algorithm 285
9.3.5 Implementation of the invasion algorithm 285

9.4 The Essex Solution Synthesis Algorithms 287
9.4.1 The AB algorithm 287
9.4.2 Implementation of AB 289
9.4.3 Variations of AB 291
9.4.4 Example of running AB 292
9.4.5 Example of running AP 294

9.5 When to Synthesize Solutions 294
9.5.1 Expected memory requirement of AB 294
9.5.2 Problems suitable for solution synthesis 295
9.5.3 Exploitation of advanced hardware 297

9.6 Concluding Remarks 297
9.7 Bibliographical Remarks 298

Chapter 10 Optimization in CSPs 299
10.1 Introduction 299
10.2 The Constraint Satisfaction Optimization Problem 299

10.2.1 Definitions and motivation 299
10.2.2 Techniques for tackling the CSOP 300
10.2.3 Solving CSOPs with branch and bound 301
10.2.4 Tackling CSOPs using Genetic Algorithms 305

10.3 The Partial Constraint Satisfaction Problem 314
10.3.1 Motivation and definition of the PCSP 314
10.3.2 Important classes of PCSP and relevant techniques 314

10.4 Summary 318
10.5 Bibliographical Remarks 319

Programs 321
Bibliography 383
Index 405

Figure 1.1 A possible solution to the 8-queens problem 2
Figure 1.2 Example of a car sequencing problem 4
Figure 1.3 matrix representing a binary-constraint 11
Figure 1.4 Transformation of a 3-constraint problem into a binary constraint 13
Figure 1.5 Example of a map colouring problem 20
Figure 1.6 Example of a scene to be labelled 21
Figure 1.7 The scene in Figure 1.5 with labelled edges 22
Figure 1.8 Legal labels for junctions (from Huffman, 1971) 22
Figure 1.9 Variables in the scene labelling problem in Figure 1.6 23
Figure 1.10 Thirteen possible temporal relations between two events 24
Figure 1.11 Example of a graph matching problem. 27
Figure 2.1 Control of the chronological backtracking (BT) algorithm 36
Figure 2.2 Search space of BT in a CSP 38
Figure 2.3 Search space for a CSP, given a particular ordering 39
Figure 2.4 Searching under an alternative ordering in the problem in Figure 2.3 40
Figure 2.5 Cost of problem reduction vs. cost of backtracking 42
Figure 2.6 A naive solution synthesis approach 45
Figure 3.1 CSP-1: example of a 3-consistent CSP which is not 2-consistent 56
Figure 3.2 CSP-2: example of a 3-consistent but unsatisfiable CSP 64
Figure 3.3 CSP-3: a problem which is satisfiable but not path-consistent 65
Figure 3.4 CSP-4: a CSP which is 1 satisfiable and 3-consistent, but

2-inconsistent and 2-unsatisfiable 67
Figure 3.5 Example of a constraint graph with the width of different orderings

shown 72
Figure 3.6 Examples and counter-examples of k-trees 74
Figure 3.7 Relationship among some consistency and satisfiability properties 77
Figure 4.1 Example of a partial constraint graph 85
Figure 4.2 An example showing that running DAC on both directions for an

arbitrary ordering does not achieve AC 90
Figure 4.3 Example showing the change of a graph during adaptive-

consistency achievement 107
Figure 4.4 A connectionist representation of a binary CSP 111
Figure 4.5 Summary of the input, output and values of the nodes in

Guesgen’s network 113
Figure 5.1 Example showing the effect of FC 125
Figure 5.2 The control of lookahead algorithms 126
Figure 5.3 Example showing the behaviour of DAC-Lookahead 132

Figures

xvi

Figure 5.4 Example showing the behaviour of AC-Lookahead 135
Figure 5.5 A board situation in the 8-queens problem 138
Figure 5.6 An example CSP for illustrating the GBJ algorithm 142
Figure 5.7 Variable sets used by Backmark-1 149
Figure 5.8 Example showing the values of Marks and LowUnits during

Backmarking 151
Figure 5.9 A board situation in the 8-queens problem for showing the role of

Truth Maintenance in a DAC-L and DDBT hybrid algorithm 153
Figure 6.1 Example of a graph and its width under different orderings 159
Figure 6.2 Example illustrating the significance of the search ordering 161
Figure 6.3 The search space explored by BT and FC in finding all solutions

for the colouring problem in Figure 6.2(a) 162
Figure 6.4 Example illustrating the steps taken by the

Find_Minimal_Width_Order algorithm 165
Figure 6.5 Example showing the bandwidth of two orderings of the nodes in

a graph 168
Figure 6.6 Node partitioning in bandwidth determination 172
Figure 6.7 Example showing the space searched by Determine_-Bandwidth 176
Figure 6.8 Example showing the steps taken by Max_cardinality 181
Figure 6.9 Example of a constraint graph in which the minimum width and

minimum bandwidth cannot be obtained in the same ordering 183
Figure 7.1 The size of the search space when a problem is decomposable 190
Figure 7.2 Steps for recognizing a 3-tree and ordering the nodes 197
Figure 7.3 Examples of cycle-cutset 202
Figure 7.4 Procedure of applying the cycle-cutset method to an example CSP 205
Figure 7.5 Search space of the cycle-cutset method 206
Figure 7.6 Example illustrating the possible gain in exploiting stable sets 208
Figure 7.7 Search space of the Stable_Set procedure 210
Figure 7.8 Examples of equivalent CSPs and their dual problems 215
Figure 7.9 General strategy underlying the tree-clustering method 216
Figure 7.10 Conceptual steps of the tree-clustering method 223
Figure 7.11 Example showing the procedure of chordal graphs generation 225
Figure 7.12 Example showing the space searched in identifying maximum

cliques 228-229
Figure 7.13 Example summarizing the tree-clustering procedure 236
Figure 7.14 Example of a graph and the j-widths of an ordering 239
Figure 7.15 Example of a set of constrained intervals and points and their

corresponding temporal constraint graph 242
Figure 7.16 Example of an unsatisfiable temporal constraint graph detected

by the AnalyseLongestPaths procedure 246
Figure 7.17 Possible space searched by AnalyseLongestPath for the temporal

constraint graph in Figure 7.16 247
Figure 7.18 Some special CSPs and specialized techniques for tackling them 249
Figure 8.1 Possible problems with hill-climbing algorithms 257

xvii

Figure 8.2 Example in which the Heuristic Repair Method would easily fail 259
Figure 8.3 Example of a binary CSP and its representation in GENET 263
Figure 8.4 Example of a network state in GENET 264
Figure 8.5 Example of a converged state in GENET 265
Figure 8.6 Example of a network in GENET which may not converge 267
Figure 9.1 The board for the 4-queens problem 277
Figure 9.2 The MP-graph constructed by Freuder’s algorithm in solving the

4-queens problem 279
Figure 9.3 Example of an invasion 281
Figure 9.4 Example showing the output of the invasion algorithm 286
Figure 9.5 Constraints being checked in the Compose procedure 290
Figure 9.6 The tangled binary tree (AB-graph) constructed by the AB

algorithm in solving the 4-queens problem 293
Figure 10.1 Example of a CSOP 304
Figure 10.2 The space searched by simple backtracking in solving the CSOP

in Figure 10.1 305
Figure 10.3 The space searched by Branch & Bound in solving the CSOP in

Figure 10.1: branches which represent the assignment of greater
values are searched first 306

Figure 10.4 The space searched by Branch & Bound in solving the CSOP in
Figure 10.1 when good bounds are discovered early in the search 307

Figure 10.5 Possible objects and operations in a Genetic Algorithm 308
Figure 10.6 Control flow and operations in the Canonical Genetic Algorithm 309

Notations Description Reference

{x | P(x)} The set of x such that P(x) is true, where P(x)
is a predicate

 S The size of the set S

∀ X: P(X):
f(X) ≡ Q(X)

f(X) is defined as Q(X) when P(X) holds; it is
undefined otherwise

Chapter 1,
footnote 1

<x, v> Label — assignment of the value v to the
variable x

Def 1-2

(<x1,v1>...<xn,vn>) Compound label Def 1-3

AC((x,y), CSP) Arc (x, y) is arc-consistent in the CSP Def 3-8

AC(CSP) The CSP is arc-consistent Def 3-9

CE(S) Constraint Expression on the set of variables
S

Def 2-8

CE(S, P) Constraint Expression on the set of variables
S in the CSP P

Def 2-9

CS or Constraint on the set of variables S or {x1,

..., xk}
Def 1-7

CSP Abbreviation for Constraint Satisfaction
Problem

csp(P) or
csp((Z, D, C))

P is a CSP, or (Z, D, C) is a CSP, where Z is
a set of variables, D is the set of domains for
the variables in Z, C is a set of constraints

Def 1-12

DAC(P, <) The CSP P is directional arc-consistent
according to the ordering <

Def 3-12

Cx1 … xh, ,

Notations and abbreviations

xx

DPC(P, <) The CSP P is directional path-consistent
according to the ordering <

Def 3-13

Dx Domain of the variable x Def 1-1

G(P) The constraint graph of the CSP P Def 1-18

graph((V, E)) (V, E) is a graph, where V is a set of nodes
and E is a set of edges

Def 1-15

H(P) The constraint hypergraph of the CSP P Def 1-18

NC(P) The CSP P is node-consistent Def 3-7

PC(p, P) The path p is path-consistent in the CSP P Def 3-10

PC(P) The CSP P is path-consistent Def 3-11

Notations Description Reference

