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Preface

Many problems can be formulated as Constraint Satisfaction Problems (CSPs),
although researchers who are untrained in this field sometimes fail to recognize
them, and consequently, fail to make use of specialized techniques for solving them.
In recent years, constraint satisfaction has come to be seen as the core problem in
many applications, for example temporal reasoning, resource allocation, schedul-
ing. Its role in logic programming has also been recognized. The importance of con-
straint satisfaction is reflected by the abundance of publications made at recent
conferences such as IJCAI-89, AAAI-90, ECAI-92 and AAAI-92. A special vol-
ume of Artificial Intelligence was also dedicated to constraint reasoning in 1992
(Vol 58, Nos 1-3).

The scattering and lack of organization of material in the field of constraint satisfac-
tion, and the diversity of terminologies being used in different parts of the literature,
make this important topic more difficult to study than is necessary. One of the
objectives of this book is to consolidate the results of CSP research so far, and to
enable newcomers to the field to study this problem more easily. The aim here is to
organize and explain existing work in CSP, and to provide pointers to frontier
research in this field. This book is mainly about algorithms for solving CSPs.

The volume can be used as a reference by artificial intelligence researchers, or as a
textbook by students on advanced artificial intelligence courses. It should also help
knowledge engineers apply existing techniques to solve CSPs or problems which
embed CSPs. Most algorithms described in this book have been explained in pseudo
code, and sometimes illustrated with Prolog codes (to illustrate how the algorithms
could be implemented). Prolog has been chosen because, compared with other lan-
guages, one can show the logic of the algorithms more clearly. I have tried as much
as possible to stick to pure Prolog here, and avoid using non-logical constructs such
as assert and retract. The Edinburgh syntax has been adopted.

CSP is a growing research area, thus it has been hard to decide what material to
include in this book. I have decided to include work which I believe to be either fun-
damental or promising. Judgement has to be made, and it is inevitably subjective. It
is quite possible that important work, especially current research which I have not
been able to fully evaluate, have been mentioned too briefly, or completely missed
out.

An attempt has been made to make this book self-contained so that readers should
need to refer to as few other sources as possible. However, material which is too
lengthy to explain here, but which has been well documented elsewhere, has been
left out.
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Formal logic (mainly first order predicate calculus) is used in definitions to avoid
ambiguity. However, doing so leaves less room for error, therefore errors are inevi-
table. For them, I take full responsibility.

Edward Tsang
University of Essex, UK
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Notations Description Reference

{x | P(x)} The set of x such that P(x) is true, where P(x)
is a predicate

 S The size of the set S

∀ X: P(X):
f(X) ≡ Q(X)

f(X) is defined as Q(X) when P(X) holds; it is
undefined otherwise

Chapter 1,
footnote 1

<x, v> Label — assignment of the value v to the
variable x

Def 1-2

(<x1,v1>...<xn,vn>) Compound label Def 1-3

AC((x,y), CSP) Arc (x, y) is arc-consistent in the CSP Def 3-8

AC(CSP) The CSP is arc-consistent Def 3-9

CE(S) Constraint Expression on the set of variables
S

Def 2-8

CE(S, P) Constraint Expression on the set of variables
S in the CSP P

Def 2-9

CS or Constraint on the set of variables S or {x1,

..., xk}
Def 1-7

CSP Abbreviation for Constraint Satisfaction
Problem

csp(P) or
csp((Z, D, C))

P is a CSP, or (Z, D, C) is a CSP, where Z is
a set of variables, D is the set of domains for
the variables in Z, C is a set of constraints

Def 1-12

DAC(P, <) The CSP P is directional arc-consistent
according to the ordering <

Def 3-12

Cx1 … xh, ,

Notations and abbreviations
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DPC(P, <) The CSP P is directional path-consistent
according to the ordering <

Def 3-13

Dx Domain of the variable x Def 1-1

G(P) The constraint graph of the CSP P Def 1-18

graph((V, E)) (V, E) is a graph, where V is a set of nodes
and E is a set of edges

Def 1-15

H(P) The constraint hypergraph of the CSP P Def 1-18

NC(P) The CSP P is node-consistent Def 3-7

PC(p, P) The path p is path-consistent in the CSP P Def 3-10

PC(P) The CSP P is path-consistent Def 3-11
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