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Abstract
Table constraints play an important role within constraint programming. Re-

cently, many schemes or algorithms have been proposed to propagate table con-
straints and/or to compress their representation. In this paper, we describe an op-
timization of simple tabular reduction (STR), a technique proposed by J. Ullmann
to dynamically maintain the tables of supports when generalized arc consistency
(GAC) is enforced/maintained. STR2, the new refined GAC algorithm we propose,
allows us to limit the number of operations related to validity checking and search
of supports. Interestingly enough, this optimization makes simple tabular reduc-
tion potentially r times faster where r is the arity of the constraint(s). The results of
an extensive experimentation that we have conducted with respect to random and
structured instances indicate that STR2 is usually around twice as fast as the orig-
inal STR, two or three times faster than the approach based on the hidden variable
encoding, and can be up to one order of magnitude faster than previously state-of-
the-art (generic) GAC algorithms on some series of instances. When comparing
STR2 with the more recently developed algorithm based on multi-valued decision
diagrams (MDDs), we show that both approaches are rather complementary.

1 Introduction
Arc Consistency (AC) plays a central role in Constraint Programming (CP). It is a prop-
erty of constraint networks that can be used to identify and remove some inconsistent
values, i.e. values which cannot lead to any solution. It is an essential component of
the Maintaining Arc Consistency (MAC) algorithm, which is commonly used to solve
binary instances of the Constraint Satisfaction Problem (CSP). It is also at the heart
of stronger consistencies that have recently received some attention such as, e.g., sin-
gleton arc consistency [3, 25], weak k-singleton arc consistency [42] and conservative
dual consistency [26].

⇤This paper is an extension of [24].
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For non-binary constraints, which arise naturally in many applications, Generalized
AC (GAC) replaces AC. Instead of using GAC extensions of generic AC algorithms,
efficiency may be improved by exploiting the semantics/structure of the constraints.
Indeed, enforcing GAC is NP-hard [4] and the best worst-case time complexity [2] that
can be obtained with a generic GAC algorithm is O(erdr) where e denotes the number
of constraints, d the greatest domain size and r the greatest constraint arity.

This paper is concerned with efficient GAC algorithms for table constraints. Here
the word table means the same thing as extensional except that table constraints are
usually non-binary. A table constraint is defined by explicitly listing the tuples that
are either allowed or disallowed for the variables of its scope. In the former case, the
table constraint is said to be positive while in the latter case, it is said negative. Table
constraints are also sometimes referred to as ad-hoc (non-binary) constraints [11].

Table constraints arise naturally in configuration problems where they represent
available combinations of options. For some applications, compatibilities (or incom-
patibilities) between resources, e.g. persons or machines, can be expressed in tables.
For example, for use in the selection of k persons to form a working group, a table may
enumerate possible associations according to certain abilities while taking into account
a (subjective) agreement criterion. Another example is that in some puzzles, e.g. cross-
words, non-binary constraints can only be expressed extensionally. Tabular data may
also come from databases: the results of database queries are sometimes expressed
as tables that have large arity. It is well known (e.g. see [20]) that there are strong
theoretical connections between relational database theory and constraint satisfaction.

Table constraints are important in constraint programming because they are easily
handled by end-users of constraint systems. For simplicity reasons, an inexperienced
user sometimes specifies extensional constraints although some of these should prefer-
ably be intensional. It is crucial to handle such extensional constraints as efficiently
as possible, ideally as though their semantics were known. Furthermore, because any
constraint can theoretically be expressed in tabular form (although this may lead to a
time and space explosion), tables provide a universal way of representing constraints.

Some recent research articles have focused on theoretical and practical aspects of
table constraints. As a result, there are many new ways to represent table constraints
and to enforce generalized arc consistency on them. One line of research aims to com-
bine the two concepts of validity and acceptability of tuples of values, using indexing
structures [30, 28, 17]. Another line focuses on compact representations using data
structures such as tries [17], multi-valued decision diagrams [10, 12, 13], compressed
tables [23] and deterministic finite automatas [35]. Significant formal and practical
results have been obtained with respect to the very classical schemes. Another recent
proposal, called simple tabular reduction (STR) [41], significantly differs from pre-
vious methods: the principle is to dynamically maintain tables in order to only keep
supports.

Our contribution in this paper is two-fold. First, we introduce an optimization of
STR which allows us to limit the number of validity checking and support search oper-
ations. Interestingly, we show that the new refined GAC algorithm we propose, called
STR2, makes simple tabular reduction potentially r times faster where r is the arity
of the constraint(s). It means that the algorithm we propose is particularly adapted to
table constraints of large arity. Second, we present the results of an extensive experi-
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mentation that we have conducted including both random and structured CSP instances.
These results confirm that when GAC is maintained on table constraints during search,
STR2 usually outperforms algorithms previously identified as state-of-the-art.

The paper is organized as follows. After some technical background in Section 2,
we present in Section 3 the classical and recent GAC algorithms for table constraints.
Then, we introduce STR in Section 4 as well as its refined version, STR2, in Sec-
tion 5. Next, in Section 6, we experimentally show the good behavior of STR2, when
compared to STR and classical GAC schemes (including GAC-valid+allowed, a robust
algorithm). Some natural variants of STR2 are presented in Section 7. Finally, before
concluding, in Section 8, we experimentally compare STR2 with binary encoding ap-
proaches as well as the compression-based approach based on multi-valued decision
diagrams (MDDs).

2 Background
A (discrete) constraint network (CN) P is composed of a finite set of n variables,
denoted by vars(P ), and a finite set of e constraints, denoted by cons(P ). Each
variable x has an associated domain, denoted by dom(x), that contains the finite set of
values that can be assigned to x. The maximum domain size for a given CN will be
denoted by d. Each constraint c involves an ordered set of variables, called the scope of
c and denoted by scp(c). It is defined by a relation, denoted by rel(c), which contains
the set of tuples allowed for the variables involved in c. The arity of a constraint c is the
size of scp(c), and will usually be denoted by r. A binary constraint involves exactly
2 variables, and a non-binary constraint strictly more than 2 variables.

A solution to a constraint network is an assignment of a value to each variable such
that all the constraints are satisfied. A constraint network is said to be satisfiable iff it
admits at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-hard
task of determining whether a given constraint network is satisfiable or not. Thus, a
CSP instance is defined by a constraint network which is solved either by finding a
solution or by proving unsatisfiability. In many cases, a CSP instance can be solved by
using a combination of search and inferential simplification [14].

A central example of inferential simplification is enforcement of GAC (Generalized
Arc Consistency), which removes certain inconsistent values. Values are inconsistent
iff they cannot occur in any solution. In some cases, enforcement of GAC can prove
that no solutions exist, without any search. Before giving a technical definition of
GAC, we introduce the notion of support. Given an ordered set {x1, . . . , xi

, . . . , x
r

}
of r variables and a r-tuple ⌧ = (a1, . . . , ai, . . . , ar) of values, the individual value a

i

will be denoted by ⌧ [x
i

].

Definition 1 Let c be an r-ary constraint. An r-tuple ⌧ is valid on c iff 8x 2 scp(c),
⌧ [x] 2 dom(x). The set of valid tuples on c is val(c) = ⇧

x2scp(c)dom(x).

Recall that a tuple ⌧ is allowed by a constraint c iff ⌧ 2 rel(c). Supports are defined
as follows.

Definition 2 Let c be an r-ary constraint. An r-tuple ⌧ is a support on c iff ⌧ is a valid
tuple on c which is allowed by c.
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If ⌧ is a support on a constraint c involving a variable x and such that ⌧ [x] = a,
we say that ⌧ is a support for (x, a) on c; we also say that (x, a) is supported by
c. To simplify discourse in this paper, we define v-values and c-values. A v-value
of a constraint network P is a variable-value pair (x, a) such that x 2 vars(P ) and
a 2 dom(x). A c-value of a constraint network P is a constraint-variable-value triplet
(c, x, a) such that c 2 cons(P ), x 2 scp(c) and a 2 dom(x).

Definition 3 Let P be a constraint network.

• A v-value (x, a) of P is generalized arc-consistent on P iff for every constraint
c of P involving x, there exists a support for (x, a) on c.

• A constraint c is generalized arc-consistent iff 8x 2 scp(c), 8a 2 dom(x), there
exists a support for (x, a) on c.

• A constraint network P is generalized arc-consistent iff every constraint of P is
generalized arc-consistent.

A v-value (x, a) that is generalized arc-consistent is also said to be GAC-consistent.
If a v-value (x, a) is not generalized arc-consistent, it is said to be GAC-inconsistent.
It is easy to see that a GAC-inconsistent value cannot occur in any solution and is
therefore (globally) inconsistent. Enforcing GAC means making the constraint net-
work GAC-consistent by removing GAC-inconsistent values (from domains). Many
algorithms are available for enforcing GAC (or for enforcing AC when the constraints
are binary) [2].

In this paper, we shall also refer to MAC (Maintaining Arc Consistency) which is
a complete algorithm considered to be among the most efficient generic approaches
for the solution of CSP instances. MAC [37] explores the search space depth-first,
backtracks when dead-ends occur, and enforces (generalized) arc consistency after each
decision taken (variable assignment or value refutation) during search. The level of a
node ⌫ in the search tree developed by MAC is the number of variable assignments
performed along the path leading from the root of the search tree to ⌫. A past variable
is (explicitly) assigned whereas a future variable is not (explicitly) assigned. Finally,
we emphasize that when GAC is enforced at a given step of the search, values are only
removed from domains of future variables.

A positive table constraint is a constraint given in extension and defined by a set of
allowed tuples. The set of allowed tuples associated with a positive table constraint c
is denoted by table[c]. This set is represented by an array of tuples indexed from 1 to
table[c].length which denotes the size of the table (i.e. the number of allowed tuples).
To record this set, the worst-case space complexity is O(tr) where t = table[c].length
and r is the arity of c. Sometimes, we are interested in the list of allowed tuples
that include a v-value (x, a). We can provide for every c-value (c, x, a) the sub-table
table[c, x, a] of allowed tuples involving (x, a), from table[c]. This is an array whose
indices ranges from 1 to table[c, x, a].length such that any element table[c, x, a][i]
gives the position (index) in table[c] of the ith allowed tuple involving (x, a). Thus
sub-tables are indexing structures.
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3 GAC Algorithms for Table Constraints

3.1 Classical GAC Schemes
There are two different ways in which a GAC algorithm can seek a support. The
support-seeking scheme called GAC-valid iterates over valid tuples until an allowed
one is found. The other natural support-seeking scheme, which is called GAC-allowed,
iterates over allowed tuples until a valid one is found. Roughly speaking, GAC-
valid and GAC-allowed correspond respectively to GAC-scheme-predicate and GAC-
scheme-allowed in [6].

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 1)
(0, 0, 0, 1, 0)

rel(c) = table[c]

(0, 0, 0, 1, 1)
(0, 0, 1, 0, 0)
(0, 0, 1, 0, 1)
(0, 0, 1, 1, 0)
(0, 0, 1, 1, 1)
(0, 1, 0, 0, 0)
(0, 1, 0, 0, 1)
(0, 1, 0, 1, 0)
(0, 1, 0, 1, 1)
(0, 1, 1, 0, 0)
(0, 1, 1, 0, 1)
(0, 1, 1, 1, 0)
(2, 2, 2, 2, 2)

x1x2x3x4x5

table[c, x1, 0]

(a) The list of allowed tuples

(0, 1, 1, 1, 1)
(0, 1, 1, 1, 2)
(0, 1, 1, 2, 1)
(0, 1, 1, 2, 2)

val(c)

(0, 1, 2, 1, 1)
(0, 1, 2, 1, 2)
(0, 1, 2, 2, 1)
(0, 1, 2, 2, 2)
(0, 2, 1, 1, 1)
(0, 2, 1, 1, 2)
(0, 2, 1, 2, 1)
(0, 2, 1, 2, 2)
(0, 2, 2, 1, 1)
(0, 2, 2, 1, 2)
(0, 2, 2, 2, 1)
(0, 2, 2, 2, 2)

x1x2x3x4x5

(b) The list of valid tuples

Figure 1: Constraint c is such that scp(c) = {x1, x2, x3, x4, x5} and rel(c) =
table[c] contains 24 (allowed) tuples, as shown. Currently, dom(x1) = {0} and
8i 2 2..5, dom(x

i

) = {1, 2}, so val(c) contains 24 (valid) tuples.

Unfortunately, visiting only the lists of valid tuples or the lists of allowed tuples
can be quite expensive. This is why many alternatives, presented later, have been
developed. In the following example, which illustrates potential drawbacks of both
classical schemes, a constraint c involves r variables x1, ..., xr

such that the domain
of each variable is initially {0, 1, 2}. Suppose that exactly 2r�1 tuples are allowed by
c: these correspond to the binary representation of all values between 0 and 2r�1 � 2
together with the tuple (2, 2, ..., 2, 2), as illustrated in Figure 1(a) with r = 5. Suppose
also that, due to propagation caused by other constraints, the domains of all variables
have been reduced to {1, 2} except for the variable x1 whose domain has been reduced
to {0}. After this propagation, there are exactly 2r�1 valid tuples that can be built for
c, as illustrated in Figure 1(b) with r = 5.
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Now consider checking whether there is a support for (x1, 0) on c. Using GAC-
valid, the time complexity of determining that (x1, 0) has no support on c is ⌦(2r�1)
because 2r�1 valid tuples are processed. GAC-allowed has also time complexity ⌦(2r�1)
because it reviews 2r�1 � 1 allowed tuples to prove that (x1, 0) has no support on c.
The behavior of both schemes is unsatisfactory because it is immediate that (x1, 0) is
GAC-inconsistent.

In [28], a refinement that combines GAC-valid and GAC-allowed without any ad-
ditional data structure is introduced: visits to lists of valid and allowed tuples are alter-
nated. The idea is to jump over sequences of valid tuples containing no allowed tuple
and to jump over sequences of allowed tuples containing no valid tuple.

For example, when seeking a support for (x1, 0) on the constraint c in Figure 1,
this refined scheme starts by finding, in O(r), the first valid tuple ⌧ = (0, 1, ..., 1, 1).
Next, the first allowed tuple ⌧ 0 greater than or equal to ⌧ is sought. When dichotomic
search is used here, this involves log2(2r�1) comparisons of tuples, which is O(r2)
because comparing two tuples is O(r). As no such tuple exists for (x1, 0), (x1, 0) is
proven to be GAC-inconsistent. Note that this refined scheme, which is called GAC-
valid+allowed, is able to skip a number of tuples that grows exponentially with the arity
of the constraints, but in a manner different to that of indexing approaches presented
in the next section. GAC-valid+allowed can be implemented using binary search or
instead using tries.

It is important to note that any GAC algorithm can be used within these schemes.
It may be the basic GAC3 [32, 33], but it may also be other coarse-grained generalized
arc consistency algorithms such as e.g. GAC2001 [7] and GAC3rm [27].

3.2 Indexing and Compression
In this section, we present recent approaches to enforce generalized arc consistency on
table constraints and/or to compress their representation.

Some of these approaches associate auxiliary functions/structures with tables. The
idea is to associate with each tuple of each table some pointers to next tuples involving
particular values. This is an index structure for use in seeking supports. The first
indexing approach [30] combines both the concept of “acceptability” (the fact that a
tuple is accepted by a constraint) and the concept of validity (the fact that each value
in a tuple is valid). A function, called nextIn, indicates for each c-value (c, x, a) and
each tuple ⌧ in table[c], the smallest tuple in table[c] that is greater than or equal to ⌧
(according to the lexicographic order) and that contains (x, a). A data structure, called
nextDiff here, in a second indexing-based approach [17] allows us to find for each
positive table constraint c, for each tuple ⌧ in table[c] and for each variable y 2 scp(c),
the next tuple in table[c] with a value for y different from ⌧ [y]. Although attractive,
these indexing approaches are considered to be outperformed by compression-based
approaches [17, 13].

We now briefly introduce four different approaches to the reduction of space re-
quired by tables. Roughly speaking, significant reduction of space turns out to reduce
running time for enforcing generalized arc consistency. The key success factor is basi-
cally the compression ratio achieved when tables are represented by sophisticated data
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structures such as tries, multi-valued decision diagrams, compressed tables or deter-
ministic finite automata.

In addition to the nextDiff indexing approach mentioned earlier, Gent et al. [17]
have used tries to represent and propagate table constraints. A trie [16] is a rooted
tree used to store and retrieve strings over an alphabet. A trie can represent a large
dictionary because a trie has only one node for each common prefix. The table of an
r-ary constraint c can be represented by a trie in which successive levels are associated
with successive variables in the scope of c. At each level, the alphabet is the domain of
the associated variable. At the leaf level we have a special terminal node t . All root-
to-leaf paths are of uniform length since all tuples are composed of exactly r elements.
In [17], the authors propose to specifically exploit tries to look for supports.

Starting with a trie, which is an arc-labelled rooted tree that eliminates prefix re-
dundancy, we can eliminate shared suffixes [10, 12] to obtain a multi-valued decision
diagram (MDD), which is an arc-labelled directed acyclic graph (DAG). In the spe-
cial case where all domains are binary we obtain a binary decision diagram (BDD)
instead of an MDD. An MDD has at least one root node and has exactly two termi-
nal nodes. One of these is t . Although there is a clear advantage of using MDDs in
terms of space complexity, enforcing generalized arc consistency requires new filter-
ing procedures that must be shown to be effective. Available algorithms [10, 13] that
enforce generalized arc consistency using MDDs are not revision-based. This means
that instead of seeking a support for each value in turn, GAC is enforced globally on
each constraint. A depth-first exploration of the MDD identifies all values that must be
removed from domains in order to enforce GAC.

The use of so-called compressed tuples [23] can also reduce the amount of memory
required for tables. A compressed tuple can be defined as follows: A compressed
tuple � for an r-ary constraint c is an r-tuple (D1, . . . , Dr

) such that D1 ⇥ · · · ⇥
D

r

✓ ⇧
x2scp(c)dom(x). Informally, a compressed table is minimal iff it is not possible

to merge two compressed tuples from the table. Minimal disjoint compressed tables
can be generated by a method [23] based on constructing decision trees. Because
the problem of constructing a decision tree with minimum average branch length is
NP-hard, Katsirelos and Walsh have heuristically selected at each construction step a
decision used to expand the tree. A fine-grained implementation of GAC based on
compressed tables is proposed in [23].

Finally, let us mention the global constraint called regular [35]: the sequence of
values taken by the successive variables in the scope of this constraint must belong to
a given regular language. For such constraints, a deterministic finite automaton (DFA)
can be used to determine whether or not a given tuple is accepted. This is an attractive
approach when constraint relations can be naturally represented by regular expressions
in a known regular language. For example, in rostering problems, regular expressions
can represent valid patterns of activities. Working with constraints defined by a DFA,
Pesant’s filtering algorithm [35] enforces generalized arc consistency by means of a
two-stage forward-backward exploration. This two-stage process constructs a layered
directed multi-graph and collects the set of states that support each v-value (x, a).
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4 Simple Tabular Reduction
To enforce GAC on positive table constraints, simple tabular reduction (STR) is an-
other approach introduced by Ullmann [41] which significantly differs from previous
methods in that it dynamically maintains the tables of allowed tuples. More precisely,
whenever a value is removed from the domain of a variable, all tuples that have become
invalid are removed from tables. This facilitates identification and removal of values
that are no longer GAC-consistent. GAC is enforced while removing invalid tuples;
only supports are kept in tables.

Although STR can be applied stand-alone, we now present it in the more general
context of a backtrack search algorithm. Indeed, an important feature of STR is the
cheap restoration of its structures when backtracking occurs. The principle of STR is
to split each table into different sets such that each tuple is a member of exactly one
set. One of these sets contains all tuples that are currently valid (and are therefore
supports): tuples in this set constitute the content of the current table. Any tuple of the
current table of a constraint c is called a current tuple of c. Other sets contain tuples
removed at different levels of search.

The following arrays provide access to the disjoint sets within table[c]:

• position[c] is an array of size t = table[c].length that provides indirect access
to the tuples of table[c]. At any given time the values in position[c] are a per-
mutation of {1, 2, . . . , t}. The ith tuple of c is table[c][position[c][i]].

• currentLimit[c] is the position of the last current tuple in table[c]. The cur-
rent table of c is composed of exactly currentLimit[c] tuples. The values in
position[c] at indices ranging from 1 to currentLimit[c] are positions of the
current tuples of c.

• levelLimits[c] is an array of size n + 1 such that levelLimits[c][p] is the
position of the first invalid tuple of table[c] removed when the search was at
level p (the level corresponds to the number of instantiated or past variables).
levelLimits[c][p] = �1 if none was removed at level p. If p is the current search
level and levelLimits[c][p] 6= �1, all tuples removed at level p can be accessed
using indices at locations in array position[c] ranging from currentLimit[c]+1
to levelLimits[c][p].

Note that the array levelLimits[c] is indexed from 0 to n (although we usually
have array indexing from 1). If the search is preceded by preprocessing then we find
at level 0 the tuples removed after the initial call to STR during preprocessing (i.e.
before search). The structure levelLimits is not required if there is no search. The
structures introduced here1, following [9], are simpler than those presented in [41, 24]
but complexities remain the same.

To illustrate their use, the following example has a positive table constraint c
xyz

such that:

• scp(c
xyz

) = {x, y, z}
1I would like to thank Hadrien Cambazard for suggesting me such a simplification.
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(c) STR applied after the removal of (y, b) at
level 1. (z, c) no longer has support and will
therefore be deleted.
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(d) STR applied after the removal of (y, c) at
level 2. No value will be deleted.
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(e) Structures obtained after the restoration per-
formed at level 1.

0

1
2

4
5

1

10

8

6
7

5

3
2

4

9
9

3

−1

6

10
7

8

−1

10

levelLimits

...

position

currentLimit

−1
1
2 cu

rr
en

t 
ta

b
le

(f) Structures obtained after the restoration per-
formed at level 0.

Figure 2: Illustration of STR on a ternary positive table constraint c
xyz

.
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• rel(c
xyz

) = {
(a, a, a), (a, a, b), (a, b, b), (b, a, a), (b, a, b),
(b, b, c), (b, c, a), (c, a, a), (c, b, a), (c, c, a)
}

Figure 2(a) shows the STR data structures initialized for the ternary constraint c
xyz

,
with its table given in Figure 2(b). Now suppose that at level 1 (that is to say, after a
first variable assignment), (y, b) is deleted by propagation (using other constraints) and
STR is applied on c

xyz

. Tuples at position 3, 6 and 9 in table[c
xyz

] are no longer valid:
their locations in array position[c

xyz

] are swapped with locations of three valid tuples.
Locations of tuples that are not valid are now at the end of the array position[c

xyz

].
levelLimits[c

xyz

][1] is initialized with the old value of currentLimits[c
xyz

], namely
10, as shown in Figure 2(c). Moreover, (z, c) is deleted because it is no longer sup-
ported by any current tuple of c

xyz

. After a second variable assignment, the removal
of (y, c) by propagation and the application of STR, the situation is as shown in Figure
2(d). Suppose now that the search backtracks to level 1. By modifying two pointers (in
constant time), we can restore the structures so that tuples removed at level 2 are now
included in the current table, as shown in Figure 2(e). Finally, if the search algorithm
backtracks to level 0, we obtain the situation shown in Figure 2(f). Tuples in the current
table in Figure 2(f) are not ordered as initially in Figure 2(a), but for STR this is not a
problem. This idea of semantic backtracking, which does not require exact restoration,
was used in CLP(R) [22, 43].

Corresponding to each variable x, we provide a set gacV alues[x] [40] that will
contain all values in dom(x) which are proved to have a support when GAC is en-
forced on a constraint c. For STR, Algorithm 1 is a filtering procedure that establishes
generalized arc consistency on positive table constraints. The loops at lines 1, 8 and
15 only iterate over uninstantiated variables because it is only possible (and it is suffi-
cient) to remove values from domains of these variables; the set past(P ) denotes the
set of variables of the constraint network P (to be solved) explicitly instantiated by the
search algorithm MAC. The sets gacV alues are emptied at lines 1 and 2 of Algorithm
1 because no value is initially guaranteed to be GAC-consistent. Then the loop at lines
4 � 13 successively processes all current tuples of the table of c. When a tuple ⌧ is
proved to be valid (see Algorithm 2), we know that it is necessarily a support since
it is (by definition) allowed; values that have been proved to be GAC-consistent are
collected at lines 8 to 10. In constant time at line 13 an invalid tuple ⌧ is removed (see
Algorithm 3), from the current table: actually it is located at the end of the current table
before the value of currentLimit[c] is decremented. If this tuple is the first removed
at the current level p, then the current limit is recorded in levelLimits[c][p]. Note that
⌧ is effectively removed without actually being moved in memory. After all current
tuples have been considered, unsupported values are removed (lines 14 to 21): these
are the values in dom(x) \ gacV alues[x]. The test gacValues [x] ⇢ dom(x) at line
16 is (in our context) equivalent to |gacValues [x]| 6= |dom(x)|, which is performed
in constant time provided that the size of sets are managed. If the domain of a vari-
able x becomes empty then an exception is thrown at line 19. Otherwise, the set of
variables reduced by STR is returned so that these “events” can be propagated to other
constraints.

10



Algorithm 1: STR(c: constraint): set of variables
Input: c is a constraint (of the constraint network P to be solved)
Output: the set of variables in scp(c) with reduced domain

foreach variable x 2 scp(c) | x /2 past(P ) do1

gacV alues[x] ;2

i 13

while i  currentLimit[c] do4

index position[c][i]5

⌧  table[c][index]6

if isValidTuple(c, ⌧) then7

foreach variable x 2 scp(c) | x /2 past(P ) do8

if ⌧ [x] /2 gacV alues[x] then9

gacV alues[x] gacV alues[x] [ {⌧ [x]}10

i i+ 111

else12

removeTuple(c, i, |past(P )|) // currentLimit[c] decremented13

// domains are now updated and X
evt

computed

X
evt

 ;14

foreach variable x 2 scp(c) | x /2 past(P ) do15

if gacV alues[x] ⇢ dom(x) then16

dom(x) gacV alues[x]17

if dom(x) = ; then18

throw INCONSISTENCY19

X
evt

 X
evt

[ {x}20

return X
evt

21

Algorithm 2: isValidTuple(c: constraint, ⌧ : tuple): Boolean
Input: c is a constraint
Input: ⌧ is a tuple whose validity must be checked
Output: true iff ⌧ is valid on c

foreach variable x 2 scp(c) do1

if ⌧ [x] /2 dom(x) then2

return false3

return true4

11



Algorithm 3: removeTuple(c: constraint, i, p: integers)
Input: c is a constraint
Input: i is the position of the tuple to be removed
Input: p is the current level (number of past variables)

if levelLimits[c][p] = �1 then1

levelLimits[c][p] currentLimit[c]2

tmp position[c][i]3

position[c][i] position[c][currentLimit[c]]4

position[c][currentLimit[c]] tmp5

currentLimits[c] currentLimit[c]� 16

Algorithm 4: restoreTuples(c: constraint, p: integer)
Input: c is a constraint
Input: p is the level at which tuples must be restored

if levelLimits[c][p] 6= �1 then1

currentLimit[c] levelLimits[c][p]2

levelLimits[c][p] �13

For a given constraint c, the worst-case time complexity of STR, Algorithm 1, is
O(r0d + rt0) where r0 = |scp(c) \ past(P )| denotes the number of uninstantiated
variables in scp(c) and t0 denotes the size of the current table of c. The loops at lines 1,
4 and 15 are O(r0), O(rt0) and O(r0d), respectively. The worst-case space complexity
of STR is O(n + rt) per constraint since levelLimits is O(n), table is O(rt) and
position is O(t).

It is well known that values must be restored to domains when backtracking occurs.
After this restoration, tuples that were invalid may now be valid. If a tuple ⌧ was
removed from the current table of c at level p, then ⌧ must be restored to the current
table of c when the search backtracks to level p � 1. In our implementation, tuples
are restored by calling Algorithm 4 which puts the set of invalid tuples removed at the
given level into the current table, at the tail end. Restoration is achieved in constant
time (for each constraint) without traversing either set and without moving any tuple in
memory [41].

Simple Tabular Reduction dynamically maintains the list (table) of current sup-
ports for each constraint. This makes it conceptually related to other approaches that
maintain a compact form of current supports such as those based on automata [35] or
decision diagrams [10, 13]. All these approaches aim at globally enforcing generalized
arc consistency by traversing a unique data structure. However, STR is the only one
that deals with the original list of allowed tuples. STR is also related to the algorithm
GAC4 [34] that can be considered as a filtering algorithm for table constraints because
all allowed tuples are explicitly stored during an initialization phase. The data struc-
tures used by GAC4 are a propagation queue containing deleted values (not yet pro-
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cessed) and for each c-value (c, x, a) a set containing the current supports for (x, a) on
c. A major difference between GAC4 and STR is that the former is guided by (deleted)
values whereas the latter globally enforces generalized arc consistency. Finally, there
exist several binary encodings of non-binary constraint networks : the dual encoding
[15], the hidden variable encoding [36] and the double encoding [39]. In these differ-
ent encodings, each non-binary constraint c becomes a dual variable x

c

whose domain
is the set of tuples allowed by c. Maintaining the list of supports of c in STR is thus
equivalent to maintaining the list of valid values of x

c

in a binary encoding. Because
of this similarity, we have decided to conduct an experimentation (presented in Section
8.2).

5 STR2
It is possible to improve STR in two directions, which yields an optimized approach
called STR2. First, as soon as all values in the domain of a variable have been detected
GAC-consistent, it is futile to continue to seek supports for values of this variable. We
therefore introduce a set, Ssup, of uninstantiated variables in scp(c) whose domain
contains at least one value for which a support has not yet been found. In STR2,
Algorithm 5, which is an optimized version of STR, lines 1 and 7 initialize Ssup to
be the same as scp(c) \ past(P ). If |gacV alues[x]| = |dom(x)| at line 19 then all
values of dom(x) are supported, so line 20 removes x from Ssup. Efficiency is gained
by iterating only over variables in Ssup at lines 16 and 25.

The second direction of improvement avoids unnecessary validity operations. At
the end of an invocation of STR for constraint c, we know that for every variable
x 2 scp(c), every tuple ⌧ such that ⌧ [x] 62 dom(x) has been removed from the current
table of c. If there is no backtrack and dom(x) does not change between this invoca-
tion and the next invocation, then at the time of the next invocation it is certainly true
that ⌧ [x] 2 dom(x) for every tuple ⌧ in the current table of c. In this case, there is no
need to check whether ⌧ [x] 2 dom(x); efficiency is gained by omitting this check. We
implement this optimization by means of a set Sval, which is the set of uninstantiated
variables whose domain has been reduced since the previous invocation of STR2. Ini-
tially, this set also contains the last assigned variable, denoted by lastPast(P ) here,
if it belongs to the scope of the constraint c. After any variable assignment x = a,
some tuples may become invalid due to the removal of values from dom(x). The last
assigned variable is the only instantiated variable for which validity operations must
be performed. Algorithm 6 checks validity only for variables in Sval. The set Sval is
initialized at lines 2 through 4 of Algorithm 5. At line 8 of this algorithm, |dom(x)| is
the size of the current domain of x while lastSize[c][x] is the size of the domain of x,
the last time the specific constraint c was processed (see lines 10 and 30); initially we
have lastSize[c][x] = �1 for every arc (c, x), i.e. each pair composed of a constraint c
and a variable x in scp(c). If these two values differ at line 8 then dom(x) has changed
since the previous invocation of Algorithm 5 for the specific constraint c. In this case,
x is included in Sval at line 9. This is how the membership of Sval is determined.

The worst-case time complexity of STR2 is O(r0d + r00t0), where r0 = |scp(c) \
past(P )| denotes the number of uninstantiated variables in scp(c), r00 = |Sval| denotes

13



Algorithm 5: STR2(c: constraint): set of variables
Input: c is a constraint (of the constraint network P to be solved)
Output: the set of variables in scp(c) with reduced domain

Ssup  ;1

Sval  ;2

if lastPast(P ) 2 scp(c) then3

Sval  Sval [ {lastPast(P )}4

foreach variable x 2 scp(c) | x /2 past(P ) do5

gacV alues[x] ;6

Ssup  Ssup [ {x}7

if |dom(x)| 6= lastSize[c][x] then8

Sval  Sval [ {x}9

lastSize[c][x] |dom(x)|10

i 111

while i  currentLimit[c] do12

index position[c][i]13

⌧  table[c][index]14

if isV alidTuple(c, Sval, ⌧) then15

foreach variable x 2 Ssup do16

if ⌧ [x] /2 gacV alues[x] then17

gacV alues[x] gacV alues[x] [ {⌧ [x]}18

if |gacV alues[x]| = |dom(x)| then19

Ssup  Ssup \ {x}20

i i+ 121

else22

removeTuple(c, i, |past(P )|) // currentLimit[c] decremented23

// domains are now updated and X
evt

computed

X
evt

 ;24

foreach variable x 2 Ssup do25

dom(x) gacV alues[x]26

if dom(x) = ; then27

throw INCONSISTENCY28

X
evt

 X
evt

[ {x}29

lastSize[c][x] |dom(x)|30

return X
evt

31
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Algorithm 6: isValidTuple(c: constraint, Sval: variables, ⌧ : tuple): Boolean
Input: c is a constraint
Input: Sval is the set of variables to be considered during the check
Input: ⌧ is a tuple whose validity must be checked
Output: true iff ⌧ is valid on c

foreach variable x 2 Sval do1

if ⌧ [x] /2 dom(x) then2

return false3

return true4

the number of variables for which validity operations must be performed, and t0 denotes
the size of the current table of c. Performing a validity check is now O(r00) instead of
O(r), as can be seen in Algorithm 6, since only variables in Sval are checked. The
loops at lines 5, 12 and 25 are O(r0), O(r00t0) and O(r0d), respectively. Like STR, the
worst-case space complexity of STR2 is O(n+ rt) per constraint since data structures
inherited from STR are O(n+ rt), lastSize is O(r); Ssup and Sval are also O(r) but
may be shared by all constraints.

We illustrate now how important is the difference in behavior that may occur, in
practice, between the two algorithms. Let us consider a positive table constraint c such
that scp(c) = {x1, ..., xr

} and the table initially includes:

(0,0,...,0)

(1,1,...,1)

...

(d-2,d-2,...,d-2)

(d-2,d-1,...,d-1)

(d-1,0,...,0)

...

In this example, the domain of each variable involved in c comprises all digits from
0 to d � 1. In the table, each of the first d � 1 tuples is a sequence that repeats the
same digit (from 0 to d � 2). The dth tuple consists of the digit d � 2 followed by
a sequence of d � 1. The d + 1th tuple consists of the digit d � 1 followed by a
sequence of 0. Assume that past(P ) = ; (no variable has been assigned) and that
simple tabular reduction (either of the two algorithms) is applied to this constraint. No
value is removed because all values are present in domains, and there exists a support
for each value. Now, imagine that (x1, d� 1) is deleted while propagating some other
constraints, whereas all other values remain valid. If STR is applied again to this
constraint, no value will be removed (since the constraint is still GAC-consistent as
any remaining value has still a support), but some tuples (at least the d+ 1th one) will
be eliminated. Interestingly, calling STR requires O(r) constant time operations to
deal with gacV alues structures (loops starting at line 1 and 15), O(rt) operations to
perform validity checks, O(rt) operations to check GAC values and O(rd) operations
to collect GAC values. On the other hand, calling STR2 requires O(r) operations
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to deal with gacV alues structures, O(t) operations to perform validity checks (since
Sval = {x1}), O(rd) operations to check GAC values (since Ssup = ; after the
treatment of the first d tuples) and O(rd) operations to collect GAC values. This leads
to:

Observation 1 There exist situations where applying STR to an r-ary constraint is
O(rt+ rd) whereas applying STR2 is O(t+ rd).

Most of the time, d << t since t 2 O(dr). In this case, Observation 1 shows
that STR2 is potentially r times faster than STR. The higher the arity, the greater the
possible benefit of using STR2.

Finally, there are two possible ways to cope with backtracking. One way is to to
reinitialize the array lastSize, filling it with the special value �1. The other way is to
record the content of such an array at each depth of search, so that the original state
of the array can be restored upon backtracking. This approach, which requires some
additional data structures, is denoted by STR2+.

To manage decrementality, we need first to introduce an array lastLevel that indi-
cates for each constraint c at which level (number of instantiated variables as given by
|past(P )|) the constraint c was most recently enforced to be GAC-consistent. We also
need an array stack that stores for each constraint c and each level p the value of the
array lastSize at the end of the last invocation of STR2 for constraint c at level p. When
the function restoreTuples, Algorithm 4, is called, it suffices to additionally execute
the following instruction:

lastLevel [c] min(lastLevel [c], p� 1)

This temporarily updates the value of lastLevel [c] since we are about to backtrack
to level p � 1. When we start executing the function STR2, Algorithm 5, we have to
execute the following instructions:

level |past(P )|
for i ranging from lastLevel [c] + 1 to level do
| stack[c][i] stack[c][lastLevel [c]]�
lastSize[c] stack [c][level ]
lastLevel [c] level

Between lastLevel [c] + 1 and level, Algorithm 5 was never called for c, so this is
the reason why we copy the value of stack[c][lastLevel [c]]. Most of the time, level =
lastLevel [c] + 1 or level = lastLevel [c]. To benefit from decrementality, lastSize[c]
is initialized with the value of stack [c][level ], and lastLevel [c] is updated. STR2+
requires an additional structure that is O(nr) per constraint.

6 Experimental Results
In order to show the practical interest of simple tabular reduction, and in particular
the optimization we propose, we have conducted an experimentation (with our solver
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AbsCon) using a cluster of Xeon 3.0GHz with 1GiB of RAM under Linux, employing
MAC with dom/ddeg [5] as variable ordering heuristic, and lexico as value ordering
heuristic. In our implementation, using the adaptive heuristic dom/wdeg [8] does not
guarantee to explore the same search tree when classical schemes are used and when
simple tabular reduction schemes are used because the order in which constraints are
propagated is different, which modifies the process of constraint weighting. This is the
reason why we have discarded this heuristic.

We have first compared classical schemes to enforce GAC on (positive) table con-
straints with simple tabular reduction (recall that these schemes are compared here,
when used within MAC). More precisely, we have implemented GAC-valid (GACv
for short in graphs and tables), GAC-allowed (GACa for short) as well as the refined
scheme GAC-valid+allowed (GACva for short). GAC-valid+allowed remains a good
representative algorithm for table constraints. Indeed, our own experience confirms the
results reported by Gent et al.: GAC-valid+allowed and the trie approach [17] are fairly
robust and close in terms of performance. The underlying GAC algorithm embedded
in these various schemes is GAC3rm [27].
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We have performed a first experimentation with random CSP instances. We have
generated different classes of instances from Model RD [45]. Each generated class
hr, 60, 2, 20, ti contains 20 CSP instances involving 60 Boolean variables and 20 r-ary
constraints of tightness t. Provided that the arity r of the constraints is greater than or
equal to 8, Theorem 2 [45] holds: an asymptotic phase transition is guaranteed at the
threshold point t

cr

= 0.875. It means that the hardest instances are generated when the
tightness t is close to t

cr

. Figure 3 shows the mean cpu time required by MAC to solve
20 instances of each class h13, 60, 2, 20, ti where t ranges from 0.8 to 0.96. On these
instances of intermediate difficulty, we can observe that STR is far more efficient than
classical schemes (including GACva). When focusing on simple tabular reduction,
Figures 4, 5, 6 and 7 clearly confirm the general observation made in Section 5 about
the increasing interest of using STR2(+) when the arity of the constraints increases.
Indeed, while STR2+ is about 20% faster than STR (at the threshold) when the arity
of constraints is 10, it becomes two times faster when the arity of constraints is 16.
Similar results have been obtained with larger domains.

Next, we have experimented on series of (random and structured) CSP instances
involving table constraints, that have been selected as benchmarks for the third2 and
fourth3 constraint solver competitions, and are available from http://www.cril.

fr/

˜

lecoutre/. These series represent a large spectrum of instances, and impor-
tantly, allow anyone to reproduce our experimentation.

1. The two series [11] bdd-21-15 and bdd-21-18 contain 35 instances each, involv-
ing 21 Boolean variables and large and small BDD constraints of arity 15 and 18,
respectively. BDD constraints are extensional constraints generated from binary
decision diagrams.

2. The two series mdd-25-7 and mdd-23-15 contain 25 instances each, involving
MDD constraints of arity 7 and 15, respectively. MDD constraints are exten-
sional constraints generated from multi-valued decision diagrams. These series
have been submitted by Cheng and Yap to the 2008 constraint solver competi-
tion.

3. The series rand-20-3 contains 50 random ternary instances each involving 20
variables. These instances were introduced in [44].

4. The two series rand-20-8 and rand-20-10 contain 20 random instances each in-
volving 20 variables. Each instance of the series rand-20-8 (resp., rand-20-10)
involves domains containing 5 (resp., 10) values and 18 (resp., 5) constraints of
arity 8 (resp., 10). Tables contain about 78, 000 and 10, 000 tuples, respectively.

5. Given a grid and a dictionary, the Crossword problem is to fill the grid with words
in the dictionary. To generate crossword instances, three series of grids (Herald,
Puzzle, Vg) and four dictionaries (Lex, Uk, Words, Ogd) have been used. Herald
refers to crossword puzzles taken from the Herald Tribune (Spring, 1999), Puzzle
refers to crossword puzzles mentioned in [18, 19] and Vg refers to blank grids.

2
http://www.univ-artois.fr/CPAI08

3
http://www.univ-artois.fr/CPAI09
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Lex is a dictionary used in [38], Uk is the UK cryptic solvers dictionary, Words
is the dictionary in /usr/dict/words under Linux, and Ogd is a french dictionary4.
Lex and Words are small dictionaries whereas Uk and Ogd are large. The model
used to generate the instances is the one identified by m1 in [1]: for each grid,
there is a variable per white square with 26 possible values (letters of the Latin
alphabet), and a constraint for any sequence of white squares that corresponds
to a word to be put in the grid. For the Vg grids, all instances only involve
extensional constraints because, putting the same word several times on the grid
is authorized. The arity of the constraints is given by the size of the grids: for
example, cw-lex-vg5-6 involves table constraints of arity 5 and 6 (the grid being
5 by 6).

6. The series renault-mod contains 50 real-world instances involving domains con-
taining up to 42 values and constraints of various arity defined by large tables
(the greatest one contains about 50, 000 6-tuples).

7. The two series tsp-20 and tsp-25 contain 15 instances of the Travelling Salesper-
son Problem each, involving domains containing up to 1, 000 values and ternary
constraints defined by large tables (about 20, 000 3-tuples).

Classical GAC schemes Simple Tabular Reduction

Series #Inst GACv GACa GACva STR STR2 STR2+

bdd-21-15 35 75.7 401.7 65.1 204.0 94.7 51.1
bdd-21-18 35 42.3 (22 out) 43.7 77.2 36.0 23.0
mdd-25-7 25 (15 out) (24 out) (17 out) (21 out) (21 out) (21 out)
mdd-23-15 25 (6 out) (25 out) (1 out) 157.7 106.5 81.2

rand-20-3 48 88.5 333.8 194.0 313.3 297.4 252.7
rand-20-8 20 115.8 (17 out) 129.5 104.3 75.4 59.2

rand-20-10 20 (20 out) 5.16 6.02 1.24 0.94 0.71

crosswords 258 (236 out) (56 out) (67 out) (52 out) (51 out) (48 out)
renault-mod 45 150.8 50.2 52.2 64.4 55.2 44.1

tsp-20 15 29.4 24.9 16.2 9.2 9.1 8.4
tsp-25 15 262.8 273.9 194.9 116.2 116.0 110.6

Table 1: Mean cpu time (in seconds) to solve instances of different series (a time-out
of 1, 200 seconds was set per instance) with MAC.

Table 1 indicates the mean cpu time required to solve the instances of these dif-
ferent series with MAC. Most of the time, STR2+ is the most efficient approach; two
exceptions are series mdd-25-7 and rand-20-3. In particular, STR2+ is 3 times faster
than STR on the bdd-21-15 series and 10 times faster than GACva on the rand-20-10

4
http://pagesperso-orange.fr/ledefi
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Classical GAC schemes Simple Tabular Reduction

Instance GACv GACa GACva STR STR2 STR2+

bdd-21-15-22 cpu 1.32 1.30 1.36 14.4 6.30 6.33

#nodes=21 mem 27M 28M 28M 97M 98M 102M

bdd-21-15-32 cpu 65.4 382 62.8 185 80.3 46.6
#nodes=1, 140 mem 27M 28M 28M 98M 98M 102M

bdd-21-15-35 cpu 88.5 372 83.7 235 115 61.1
#nodes=1, 465 mem 27M 28M 28M 97M 98M 102M

bdd-21-18-10 cpu 0.83 0.99 1.00 7.19 3.55 3.62

#nodes=21 mem 40M 42M 44M 62M 62M 65M

bdd-21-18-2 cpu 44.5 > 20m 45.4 83.4 38.4 23.5
#nodes=10, 660 mem 61M 44M 65M 65M 66M

bdd-21-18-11 cpu 66.5 > 20m 66.7 123 58.5 34.9
#nodes=14, 716 mem 46M 44M 65M 65M 101M

mdd-25-7-23 cpu 45.2 783 57.2 123 100 84.7

#nodes=24, 926 mem 168M 231M 230M 177M 177M 177M

mdd-25-7-19 cpu 374 > 20m 482 742 579 483

#nodes=235K mem 168M 231M 187M 187M 187M

mdd-25-7-18 cpu 789 > 20m 997 > 20m > 20m > 20m

#nodes=485K mem 167M 229M

mdd-23-15-25 cpu 583 > 20m 197 162 112 88.1
#nodes=33, 585 mem 521M 633M 530M 532M 530M

mdd-23-15-9 cpu 899 > 20m 288 159 105 81.6
#nodes=60, 436 mem 523M 633M 533M 533M 533M

mdd-23-15-23 cpu 1, 125 > 20m 424 158 105 81.0
#nodes=92, 666 mem 523M 633M 535M 535M 534M

rand-20-3-38 cpu 11.7 38.1 23.1 39.9 39.4 30.5

#nodes=29, 428 mem 21M 26M 26M 26M 25M 25M

rand-20-3-8 cpu 14.4 51.4 31.6 46.3 40.5 36.6

#nodes=36, 869 mem 21M 28M 28M 26M 27M 27M

rand-20-3-11 cpu 263 1, 056 582 879 783 725

#nodes=632K mem 22M 28M 28M 56M 56M 56M

Table 2: Representative results obtained on BDD/MDD instances and ternary random
instances. Cpu time is given in seconds and mem(ory) in MiB. The number of nodes
(#nodes) explored by MAC is given below the name of each instance.
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Classical GAC schemes Simple Tabular Reduction

Instance GACv GACa GACva STR STR2 STR2+

rand-20-8-7 cpu 17.8 577 19.8 31.0 23.5 18.0

#nodes=14, 252 mem 171M 215M 215M 176M 175M 175M

rand-20-8-9 cpu 125 > 20m 152 157 115 85.0
#nodes=108K mem 171M 216M 180M 180M 180M

rand-20-8-13 cpu 448 > 20m 459 245 181 141
#nodes=569K mem 171M 216M 202M 202M 203M

rand-20-10-12 cpu > 20m 4.17 5.1 0.53 0.47 0.36
#nodes=761 mem 24M 15M 11M 11M 11M

rand-20-10-11 cpu > 20m 5.79 21.3 0.93 0.48 0.72

#nodes=790 mem 24M 27M 22M 22M 22M

rand-20-10-5 cpu > 20m 6.29 16.7 1.46 0.83 0.92

#nodes=908 mem 24M 15M 22M 11M 22M

renault-mod-0 cpu 10.4 1.07 1.05 1.01 1.01 0.96
#nodes=287 mem 36M 42M 42M 35M 35M 36M

renault-mod-12 cpu 246 100.0 102 101 89.0 77.3
#nodes=415K mem 36M 41M 41M 55M 54M 56M

renault-mod-14 cpu 968 364 353 395 360 282
#nodes=1, 135K mem 37M 42M 42M 43M 42M 42M

tsp-20-190 cpu 5.92 6.47 5.5 3.89 3.86 3.84
#nodes=7, 738 mem 217M 10M 19M 18M 19M 19M

tsp-20-366 cpu 34.4 42.8 30.1 17.9 17.8 16.0
#nodes=31, 701 mem 250M 20M 20M 20M 20M 20M

tsp-20-193 cpu 273 205 120 63.2 62.4 56.0
#nodes=80, 849 mem 295M 21M 21M 23M 18M 23M

tsp-25-13 cpu 3.64 2.81 2.68 1.91 1.90 1.95

#nodes=2, 421 mem 195M 19M 19M 18M 18M 18M

tsp-25-163 cpu 159 200 126 73.0 71.9 61.0
#nodes=89, 883 mem 307M 21M 21M 26M 17M 26M

tsp-25-456 cpu 956 1, 055 742 436 438 407
#nodes=686K mem 272M 20M 20M 52M 53M 53M

Table 3: Representative results obtained on random instances with large arity con-
straints and on structured instances from series renault-mod, tsp-20 and tsp-25. Cpu
time is given in seconds and mem(ory) in MiB. The number of nodes (#nodes) explored
by MAC is given below the name of each instance.
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Classical GAC schemes Simple Tabular Reduction

Instance GACv GACa GACva STR STR2 STR2+

Crossword puzzles with dictionary lex (24, 974 words)

cw-lex-vg5-6 cpu > 20m 40.7 61.9 14.7 11.9 10.8
#nodes=26, 679 mem 2, 895K 17M 16M 3, 917K 16M

cw-lex-vg5-7 cpu > 20m 378 950 138 107 89.7
#nodes=171K mem 17M 17M 23M 23M 24M

cw-lex-vg6-6 cpu > 20m 3.38 4.77 1.65 1.33 1.24
#nodes=1, 602 mem 16M 16M 15M 15M 15M

cw-lex-vg6-7 cpu > 20m 475 > 20m 166 142 116
#nodes=152K mem 17M 23M 23M 23M

Crossword puzzles with dictionary words (45, 371 words)

cw-words-vg5-5 cpu 14.2 0.38 0.04 0.34 0.40 0.04
#nodes=38 mem 16M 16M 4, 972K 15M 15M 4, 811K

cw-words-vg5-6 cpu 519 1.66 1.95 0.81 0.69 0.33
#nodes=718 mem 17M 17M 17M 16M 16M 6, 302K

cw-words-vg5-7 cpu > 20m 20.3 36.8 6.78 5.6 3.98
#nodes=6, 957 mem 18M 18M 16M 16M 8, 185K

cw-words-vg5-8 cpu > 20m 924 > 20m 271 226 182
#nodes=256K mem 17M 29M 29M 29M

Crossword puzzles with dictionary uk (225, 349 words)

cw-uk-vg5-5 cpu 5.11 0.36 0.43 0.37 0.36 0.36
#nodes=28 mem 17M 17M 17M 16M 16M 16M

cw-uk-vg5-6 cpu 144 0.92 0.9 0.56 0.52 0.50
#nodes=145 mem 19M 20M 20M 19M 19M 19M

cw-uk-vg5-7 cpu > 20m 3.51 5.44 0.85 0.71 0.68
#nodes=408 mem 21M 21M 20M 21M 19M

cw-uk-vg5-8 cpu > 20m 83.9 73.8 7.26 5.65 4.77
#nodes=8, 148 mem 23M 22M 22M 22M 22M

Crossword puzzles with dictionary ogd (435, 705 words)

cw-ogd-vg6-6 cpu 372 0.76 0.67 0.58 0.51 0.48
#nodes=98 mem 18M 19M 19M 18M 18M 18M

cw-ogd-vg6-7 cpu > 20m 101 58.2 11.8 9.00 7.43
#nodes=9, 522 mem 23M 23M 22M 22M 22M

cw-ogd-vg6-8 cpu > 20m 56.4 7.12 3.39 2.57 2.26
#nodes=2, 806 mem 28M 28M 27M 27M 27M

cw-ogd-vg6-9 cpu > 20m 744 204 35.6 25.0 19.5
#nodes=23, 283 mem 31M 32M 30M 30M 30M

Table 4: Representative results obtained with MAC on series of Crossword puzzles
using dictionaries of different length.
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series. Table 2 presents the results obtained on some representative BDD/MDD and
random instances. Here, for each series, we show the results for 3 instances of various
difficulty. For example, the instance bdd-21-15-22 only requires visiting 21 nodes (to
be solved) whereas the instance bdd-21-15-35 requires visiting 1, 465 nodes. Typically,
when the instance is easy, using simple tabular reduction is rather penalizing. This is
not really surprising since managing dynamic tables is then just an overhead. This is
particularly visible for easy instances of series bdd-21-15 and bdd-21-18. In terms of
memory, the difference of memory consumption between all algorithms is at most by
a factor 2. Note that the additional structure in O(nr) required by STR2+ has a very
limited practical impact on all these series.

The instances of series mdd-25-7 and rand-20-3 are better adapted to GACv. Every
constraint c involved in any instance of series mdd-25-7 is such that |val(c)| = 57, and
every constraint c involved in any instance of series rand-20-3 is such that |val(c)| =
203. The relative small size of theses sets (composed of initially valid tuples) is clearly
an advantage for the scheme GAC-valid. This explains the good behavior of GACv on
these two series.

Table 3 gives additional results for series of structured instances. Although in-
stances of series tsp-20 and tsp-25 only involve ternary constraints, GACv is not the
most efficient approach here. This can be explained by the large domain size (1, 000)
of certain variables. Finally, Table 4 shows the results that we have obtained for the
Crossword problem with respect to four dictionaries (lex, words, uk, ogd). This con-
firms our previous results. On the most difficult instances, STR2+ is about two times
faster than STR and one order of magnitude faster than GACva. One reason explain-
ing the efficiency of simple tabular reduction on crossword puzzles is the fact that the
tables become rather small after a few variables have been assigned.

7 Variants of Simple Tabular Reduction
A development of STR involves partially iterating the (current) table. The following
observation makes this possible: as soon as all values admit a support, the constraint
is necessarily GAC-consistent. It is sufficient to introduce a counter nbUnsupported
that indicates the current number of values for which no support has been found yet.
Algorithm 7 is a variant of Algorithm 1 that exploits this counter. Initially, the counter
is set to the total number of values in the domains of uninstantiated variables; see lines
2 and 5. When a support is found for a value, the counter is decremented; see line 15.
Finally, when the counter reaches 0, we can stop iterating over the tuples of the table;
see lines 18 and 19. Notice that the variable nbUnsupported can also be used to break
the loop starting at line 24. In particular, when nbUnsupported becomes 0 at line 18,
there is no need to enter the loop starting at line 24. This optimization is not shown in
the code of Algorithm 7.

Intuitively, to make this variant still more efficient, it seems better to put at the
beginning of the table, some tuples that correspond to the first support of at least one
value. Here, these tuples are called residues as in [31, 27]. Then, we just need to count
the number of residues encountered so far when iterating the table; this is the role of
the counter nbResidues . When a tuple is found to be the first support of (at least) one
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Algorithm 7: STR

p+r(c: constraint): set of variables
Input: c is a constraint (of the constraint network P to be solved)
Output: the set of variables in scp(c) with reduced domain

1 nbResidues  0
2 nbUnsupported  0

foreach variable x 2 scp(c) | x /2 past(P ) do
gacV alues[x] ;

5 nbUnsupported  nbUnsupported + |dom(x)|
i 1
while i  currentLimit[c] do

index position[c][i]
⌧  table[c][index]

10 nbBefore  nbUnsupported
if isValidTuple(c, ⌧) then

foreach variable x 2 scp(c) | x /2 past(P ) do
if ⌧ [x] /2 gacV alues[x] then

gacV alues[x] gacV alues[x] [ {⌧ [x]}
15 nbUnsupported  nbUnsupported � 1

16 if nbBefore > nbUnsupported then
17 storeResidue(c, i)

18 if nbUnSupported = 0 then
19 break; // Stop iterating the table

i i+ 1
else

removeTuple(c, i, |past(P )|) // currentLimit[c] decremented

// domains are now updated and X
evt

computed

X
evt

 ;
24 foreach variable x 2 scp(c) | x /2 past(P ) do

if gacV alues[x] ⇢ dom(x) then
dom(x) gacV alues[x]
if dom(x) = ; then

throw INCONSISTENCY
X

evt

 X
evt

[ {x}
return X

evt

Algorithm 8: storeResidue(c: constraint, i: integer)
Input: c is a constraint
Input: i is the position of the tuple to be moved

tmp position[c][i]
position[c][i] position[c][nbResidues]
position[c][nbResidues] tmp
nbResidues nbResidues+ 1
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value, this tuple is swapped with the first tuple in the table which is not considered as
a residue; see lines 16 and 17. The function storeResidue, Algorithm 8, allows us to
perform this swapping. However, for STR2, we cannot use this variant as such. The
reason is that if invalid tuples are not systematically removed from the (current) table,
then the exploitation of Sval is not safe anymore.

We have implemented these variants in AbsCon, and conducted an experimentation
in order to compare the behavior of:

• STR alone, Algorithm 1;

• STRp+r, Algorithm 7; p stands for partial iteration and r for residues exploita-
tion;

• STRp, where only partial iteration is used (lines 16 and 17 of Algorithm 7 dis-
carded);

• STRr, where only residues are used (lines 18 and 19 of Algorithm 7 discarded);

• STR2 alone, Algorithm 5;

• STR2r, where residues are used as in Algorithm 7.

Series #Inst STR STRr STRp STRp+r

bdd-21-15 34 204.0 202.5 132.6 117.6
bdd-21-18 35 77.2 77.7 (3 out) (3 out)
mdd-25-7 25 (21 out) (21 out) (24 out) (24 out)
mdd-23-15 25 157.7 157.4 (23 out) (25 out)

rand-20-3 47 298.1 298.5 352.5 367.1
rand-20-8 20 104.3 104.1 (5 out) (6 out)

rand-20-10 20 1.24 1.14 0.96 0.89

crosswords 205 53.6 54.7 51.0 43.9
renault-mod 45 64.4 64.5 49.3 47.4

tsp-20 15 9.2 8.9 9.2 9.0
tsp-25 15 116.2 115.8 114.0 114.2

Table 5: Mean cpu time (in seconds) to solve instances of different series (a time-out
of 1, 200 seconds was set per instance) with MAC.

Table 5 indicates the mean cpu time required to solve the instances of the different
series introduced earlier with variants of STR. A first observation is that managing
residues has little impact. If STRp and STRp+r can be slightly differentiated, STR
and STRr are really quite close. A second observation is that partial iteration may
have a significant impact. It may be an advantage (compare STR and STRp on series
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bdd-21-15) and it may be a disadvantage (compare STR and STRp on series bdd-21-
18,mdd-23-15 and rand-20-8). Overall, a general lesson is that the best variant of STR
is always outperformed by STR2(+). As Table 6 confirms for STR2(+) that managing
residues is not important, we can deduce that STR2+ remains so far the best algorithm
based on simple tabular reduction.

Series #Inst STR2 STR2r STR2+ STR2+r

bdd-21-15 34 94.7 93.0 51.1 50.0
bdd-21-18 35 36.0 35.9 23.0 23.1
mdd-25-7 4 545.7 534.5 448.3 449.3
mdd-23-15 25 106.5 105.7 81.2 81.3

rand-20-3 48 297.4 300.6 252.7 252.8
rand-20-8 20 75.4 74.3 59.2 59.1

rand-20-10 20 0.94 0.89 0.71 0.76

crosswords 206 51.3 49.0 37.8 35.9
renault-mod 45 55.2 54.2 44.1 44.7

tsp-20 15 9.2 9.1 8.4 8.9
tsp-25 15 116.0 116.4 110.6 111.5

Table 6: Mean cpu time (in seconds) to solve instances of different series (a time-out
of 1, 200 seconds was set per instance) with MAC.

8 Comparison with Other Approaches
We want first to emphasize that it is very difficult to compare the practical behavior
of two (or more) sophisticated algorithms developed by independent research teams.
Comparison of a new algorithm with previous ones is made possible by means of pub-
lished results when the environment (operating system, cpu, language, etc.) and the
search/inference procedure is well-known (e.g. search heuristics, branching mecha-
nism, etc.). Another option is to reimplement previous algorithms, but with the trap of
badly using required data structures. Nevertheless, this was our choice.

8.1 Comparison with the MDD Approach
The MDD approach [13] to enforce GAC on table constraints can certainly be consid-
ered as the most efficient approach that has been developed recently. This is why we
have implemented it (using the sparse set data structure as described in the paper) in
our platform AbsCon. If as mentioned above, this is not a perfect solution to compare
algorithms, we do believe that it can provide interesting general indications. We have
implemented the algorithm described in [12, 13] with (MDDc) and without (MDD)
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the early cutoff optimization. Table 7 shows how simple tabular reduction (STR2+)
and MDD variants behave respectively. On some series (mdd-23-15, rand-20-10 and
crosswords), STR2+ largely outperforms MDDc. On some other series (mdd-25-7 and
rand-20-3), MDDc largely outperforms STR2+. This is when the table can be effi-
ciently compressed by means of a MDD: the compression ratio (number of MDD nodes
over number of initial tuples) is about 1% for a constraint from series mdd-25-7 and
14% for a constraint from series rand-20-3. Finally, STR2+ and MDDc have a rather
similar behavior on series renault-mod, tsp-20 and tsp-25. Results for representative
instances are given in Table 8.

Series #Inst STR2+ MDD MDDc

bdd-21-15 35 50.7 205.4 149.3
bdd-21-18 35 23.0 142.5 99.0
mdd-25-7 25 (19 out) (9 out) (6 out)
mdd-23-15 25 81.3 666.1 645.3

rand-20-3 49 244.2 269.4 129.2
rand-20-8 20 59.3 171.4 109.2

rand-20-10 20 0.85 7.3 7.2

crosswords 199 20.4 90.9 89.8
renault-mod 46 64.8 74.8 61.7

tsp-20 15 8.8 10.8 11.0
tsp-25 15 114.3 129.5 136.6

Table 7: Mean cpu time (in seconds) to solve instances of different series (a time-out
of 1, 200 seconds was set per instance) with MAC.

8.2 Comparison with Binary Encoding Approaches
There are three well-known binary encodings of non-binary constraint networks. These
encodings that transform any non-binary constraint network into an equivalent binary
one are:

• the dual encoding [15]

• the hidden variable encoding [36]

• the double encoding [39]

All three binary encodings represent each non-binary constraint c by a dual vari-
able whose domain is the set of tuples allowed by c. In the dual encoding, for each
pair of dual variables that represent non-binary constraints sharing at least one origi-
nal variable, a binary dual constraint is introduced. In the hidden variable encoding,

29



Instance #Inst STR2+ MDD MDDc

mdd-25-7-1 cpu 740 166 124
#nodes=259K mem 182M 79M 79M

mdd-25-7-19 cpu 483 156 121
#nodes=235K mem 181M 78M 78M

mdd-25-7-3 cpu > 20m 388 280
#nodes=558K mem 85M 85M

rand-20-3-12 cpu 49.4 48.7 23.8
#nodes=38, 268 mem 26M 30M 30M

rand-20-3-18 cpu 142 135 58.0
#nodes=69, 427 mem 26M 29M 29M

rand-20-3-37 cpu 838 931 447
#nodes=575K mem 39M 42M 42M

rand-20-10-12 cpu 0.72 4.4 4.13

#nodes=761 mem 22M 48M 48M

rand-20-10-5 cpu 0.91 11.4 11.2

#nodes=908 mem 22M 48M 48M

rand-20-10-16 cpu 1.3 18.4 17.7

#nodes=867 mem 22M 48M 48M

cw-uk-vg5-7 cpu 0.65 1.9 1.87

#nodes=408 mem 20M 24M 24M

cw-uk-vg6-7 cpu 69.1 345 344

#nodes=92, 493 mem 24M 29M 29M

cw-uk-vg7-7 cpu 124 668 659

#nodes=127K mem 24M 28M 27M

renault-mod-0 cpu 1.04 1.19 1.16

#nodes=287 mem 35M 27M 27M

renault-mod-12 cpu 71.6 96.7 88.0

#nodes=415K mem 46M 37M 37M

renault-mod-14 cpu 292 327 273
#nodes=1, 135K mem 63M 55M 55M

tsp-25-13 cpu 1.94 2.19 2.18

#nodes=2, 421 mem 18M 19M 19M

tsp-25-163 cpu 65.7 73.1 78.5

#nodes=89, 883 mem 24M 25M 25M

tsp-25-456 cpu 432 488 515

#nodes=686K mem 36M 38M 38M

Table 8: Representative results obtained with MAC on different series. MDDc out-
performs STR2+ on series mdd-25-7 and rand-20-3. STR2+ outperforms MDDc on
series rand-20-10 and crosswords. STR2+ and MDDc have a rather similar behavior
on series renault-mod and tsp-25.
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the original variables are kept, and binary connection constraints link original and dual
variables. The double encoding includes both dual and connection constraints.

Series d
dual

e
dual

MO

bdd-21-15 ⇡ 7,000 3,678,828 35/35
bdd-21-18 ⇡ 57,000 8,778 35/35
mdd-25-7 ⇡ 45,000 ⇡ 1,440 25/25
mdd-23-15 150,000 120 25/25

rand-20-3 2,944 ⇡ 680 50/50
rand-20-8 ⇡ 78,000 ⇡ 152 20/20
rand-20-10 10,000 10 0/20

crosswords-lex 4,042 varied 0/63
crosswords-words 7,360 varied 16/65

crosswords-uk 32,865 varied 53/65
crosswords-ogd 68,064 varied 56/65

renault-mod 48,721 ⇡ 4,000 50/50
tsp-20 ⇡ 15,000 3,839 15/15
tsp-25 ⇡ 15,000 7,549 15/15

Table 9: Greatest domain size of dual variables (d
dual

), number of dual constraints
(e

dual

), and number of instances that runs out of memory (MO) when considering the
dual/double encoding for each series.

Because efficient algorithms [38] have been devised for binary encodings, it is nat-
ural to compare them with STR. Let us consider first the dual and the double encod-
ings. In both of these encodings, we have dual constraints. More precisely, if x

c

and x
c

0 are two dual variables representing the original constraints c and c0, and if
scp(c) \ scp(c0) 6= ;, then we have a dual constraint involving x

c

and x
c

0 and al-
lowing pairs of values that correspond to original tuples with the same projection on
scp(c) \ scp(c0). When tables of non-binary constraints are large, we obtain dual
variables with large domains. As a result, the tables of dual constraints may require
excessive space since, if d

dual

denotes the greatest domain size for dual variables, a
dual constraint may need to store up to d

dual

⇥ d
dual

tuples (pairs of values). Be-
sides, depending on the way original constraints intersect, the number e

dual

of dual
constraints may also be very important. To summarize, the space required for the dual
encoding (and a fortiori the double encoding) of a CN embedding non-binary con-
straints with large tables may easily exceed the available amount of computer memory.
This is shown in Table 9 where for each series of instances considered in this paper,
we indicate the typical values of d

dual

and e
dual

as well as the number of instances
that runs out of memory (MO) at loading time, given 1GiB of RAM; ⇡ means that an
approximation of the average value (computed over all instances of the same series)
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is given. For example, each instance of the series bdd-21-15 requires a huge number
of dual constraints (more than 3,000,000), and each instance of the series bdd-21-18
involves dual variables with domains containing around 57, 000 values. Clearly, many
instances of these series cannot be converted using the dual/double encoding: this is
only possible here for the series rand-20-10 and basically for the Crossword instances
that are built from a small dictionary (lex and words). As the last three series of Table
9 involve both positive and negative table constraints, we only tried to build dual vari-
ables and dual constraints corresponding to positive table constraints while discarding
negative ones. Even with this restriction, we didn’t succeed in loading any instance of
these series.

Now, let us focus on the hidden encoding. We propose to compare STR2+ on the
original non-binary instances with our speediest AC algorithm, AC3bit+rm [29], on the
hidden variable encoding, denoted by AC-H, and the AC algorithm specialized for the
hidden variable encoding proposed in [38], denoted here by HAC. For our comparison,
we still use MAC but we now adopt dom [21], which is the variable ordering heuristic
that selects at each search step the variable with the smallest domain size. Using dom
and instantiating original variables only (i.e. not dual ones) guarantee that the same
search trees are built by the three approaches. Table 10 shows the mean CPU times
obtained by MAC on the different series of random instances and crossword puzzles.
STR2+ is shown to be two or three times faster than AC3bit+rm and HAC on the hidden
variable encoding. Table 11 shows this on some representative instances.

Series #Inst STR2+ AC-H HAC

Random Series

rand-20-3 14 236 493 476
rand-20-8 10 163 445 570

rand-20-10 20 15.2 46.8 41.1

Crosswords Series Herald and Puzzle

crosswords-lex 48 6.7 10.1 8.5
crosswords-words 53 10.1 26.6 18.0

crosswords-uk 58 6.8 15.6 13.6
crosswords-ogd 55 1.3 2.7 2.7

Crosswords Series Vg

crosswords-lex 68 7.9 25.0 13.0
crosswords-words 64 21.6 78.0 43.8

crosswords-uk 39 38.3 124 98.4
crosswords-ogd 37 26.1 44.2 46.1

Table 10: Mean cpu time (in seconds) to solve instances of different series (a time-out
of 1, 200 seconds was set per instance) with MAC.
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Instance STR2+ AC-H HAC

rand-20-3-21 cpu 152 365 298

#nodes=171K mem 42M 67M 67M

rand-20-8-15 cpu 100 332 387

#nodes=345K mem 196M 607M 607M

rand-20-10-15 cpu 20 39 35.5

#nodes=21, 600 mem 33M 56M 56M

cw-lex-15.04 cpu 9.2 24.3 17.8

#nodes=25, 934 mem 29M 79M 79M

cw-lex-15.07 cpu 210 320 274

#nodes=1, 720K mem 30M 89M 89M

cw-ogd-vg6-9 cpu 22.7 78.3 57.2

#nodes=29, 986 mem 42M 257M 257M

cw-ogd-vg8-8 cpu 82.9 354 257

#nodes=29, 362 mem 38M 341M 342M

Table 11: Representative results obtained on some series.

9 Conclusion
Simple tabular reduction (STR) [41] is a simple and effective GAC algorithm for posi-
tive table constraints. In this paper, we have proposed an optimization of this algorithm.
This new algorithm (STR2+) appears among state-of-the-art GAC algorithms for (non-
binary) table constraints. We have shown this experimentally by comparing STR2+
with classical GAC schemes (including the robust GAC-valid+allowed), different bi-
nary encodings and also the recent MDD approach. Interestingly, STR2+ and MDDc

seem to be rather complementary: the best choice among STR2+ or MDDc depends on
the compression ratio of built multi-valued decision diagrams.

Dynamically maintaining the list of supports in table constraints, as performed by
simple tabular reduction, has some other nice features that might be useful in the near
future. Because the current number of supports is permanently known, it is quite easy
to compute the current tightness of the constraints. This can be exploited, for example,
by search heuristics and/or shaving techniques. Besides, if the current tightness of a
constraint is found to be 0, then it means that this constraint is entailed (i.e. similar
to a universal constraint). Temporarily discarding such constraints may improve the
efficiency of propagation. The identification of entailed constraints can also play an
interesting role for counting or enumerating all solutions of loose problems.
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