
Optimization of Simple Tabular Reduction
for Table Constraints

Christophe Lecoutre

CRIL – CNRS UMR 8188,
Université Lille-Nord de France, Artois
rue de l’université, SP 16, F-62307 Lens

lecoutre@cril.fr

Abstract. Table constraints play an important role within constraint program-
ming. Recently, many schemes or algorithms have been proposed to propagate ta-
ble constraints or/and to compress their representation. We show that simple tabu-
lar reduction (STR), a technique proposed by J. Ullmann to dynamically maintain
the tables of supports, is very often the most efficient practical approach to en-
force generalized arc consistency within MAC. We also describe an optimization
of STR which allows limiting the number of operations related to validity check-
ing or search of supports. Interestingly enough, this optimization makes STR
potentially r times faster where r is the arity of the constraint(s). The results of
an extensive experimentation that we have conducted with respect to random and
structured instances indicate that the optimized algorithm we propose is usually
around twice as fast as the original STR and can be up to one order of magnitude
faster than previous state-of-the-art algorithms on some series of instances.

1 Introduction

Arc Consistency (AC) plays a central role in Constraint Programming (CP). It is a
property of constraint networks which can be exploited to identify and remove some
inconsistent values, i.e. values which cannot lead to any solution. It is an essential com-
ponent of the Maintaining Arc Consistency (MAC) algorithm, which is commonly used
to solve binary instances of the Constraint Satisfaction Problem (CSP). It is also at the
heart of stronger consistencies that have recently received some attention such as, e.g.,
singleton arc consistency [3, 11], weak k-singleton arc consistency [19] and conserva-
tive dual consistency [12].

For non-binary constraints, which arise naturally in many applications, Generalized
AC (GAC) replaces AC. Instead of using GAC extensions of generic AC algorithms,
efficiency may be improved by exploiting the semantics/structure of the constraints.
Indeed, enforcing GAC is NP-hard [4] and the best worst-case time complexity [2] that
can be obtained with a generic GAC algorithm is O(erdr) where e denotes the number
of constraints, d the greatest domain size and r the greatest constraint arity.

This paper is concerned with GAC algorithms for positive table constraints. A pos-
itive (resp. negative) table constraint is a constraint that is defined in extension by a set
of allowed (resp. disallowed) tuples. Table constraints are commonly used in configura-
tion applications or applications related to databases. Moreover, table constraints play

a particular role in constraint programming since they are easily handled by end-users
of CP systems. Because any constraint can be theoretically translated into a table one
(except that, in practice, this can lead to a time and space explosion), tables can be
considered as the universal way of representing constraints.

In the last few years, many works have been devoted to table constraints. Many
schemes or algorithms have been proposed to enforce GAC on table constraints or/and
to compress their representation. In particular, one line of research (see [15, 13, 8]) aims
to combine the two concepts of validity and acceptability of tuples of values. Signifi-
cant formal and practical results have been obtained with respect to the very classical
schemes [5]. Another recent proposal, called simple tabular reduction (STR) [18], sig-
nificantly differs from previous methods: the principle is to dynamically maintain tables
in order to only keep supports.

Our contribution in this paper is two-fold. First, we present the results of an exten-
sive experimentation including both random and structured CSP instances which show
that STR is quite competitive with respect to state-of-the-art algorithms (results in [18]
were essentially given for random instances in the context of partition search). We can
conclude that when GAC is maintained on table constraints during search, very often,
STR is the most efficient approach. Second, we present an optimization of STR which
allows limiting the number of validity checking and support search operations. Inter-
estingly, we show that this optimization makes STR potentially r times faster where r
is the arity of the constraint(s). It means that the algorithm we propose is particularly
adapted to table constraints of large arity.

The paper is organized as follows. After introducing some technical background and
related work, we present STR. Then, we describe how STR can be optimized. Before
concluding, we present the results of an extensive experimentation.

2 Technical Background

A Constraint Network (CN) P is a pair (X ,C) where X is a finite set of n variables
and C a finite set of e constraints. Each variable X 2 X has an associated domain,
denoted dom(X), that contains the set of values allowed for X . Each constraint C 2 C
involves an ordered subset of variables of X and has an associated relation, denoted
rel(C), which is the set of tuples allowed for this subset of variables. This subset of
variables is the scope of C and is denoted scp(C). The arity of a constraint is the
number of variables in its scope. A binary constraint has arity 2.

A solution to a CN is an assignment of a value to each variable such that all the
constraints are satisfied. A CN is said to be satisfiable iff it admits at least one solution.
The Constraint Satisfaction Problem (CSP) is the NP-hard task of determining whether
a given CN is satisfiable or not. A CSP instance is defined by a CN which is solved either
by finding a solution or by proving unsatisfiability. In many cases, a CSP instance can
be solved by using a combination of search and inferential simplification.

A central example of inferential simplification is enforcement of GAC, which re-
moves inconsistent values from domains without reducing the set of solutions of the
CN. Values are inconsistent if they cannot occur in any solution. In some cases, en-
forcement of GAC can yield a solution directly, without any search.

Before giving a technical definition of GAC, we introduce the notion of support.
Given an ordered set {X1, . . . , Xi, . . . , Xk} of k variables and a k-tuple ⌧ = (a1, . . . , ai,
. . . , ak) of values, the individual value ai will be denoted by ⌧ [i] and also ⌧ [Xi] by
abuse of notation. If C is a k-ary constraint, then the k-tuple ⌧ is said to be allowed by
C iff ⌧ 2 rel(C) ; a valid tuple of C iff 8X 2 scp(C), ⌧ [X] 2 dom(X) ; a support of
C iff ⌧ is a valid tuple of C which is allowed by C.

A pair (X, a) with X 2 X and a 2 dom(X) will be called a value (of P). A
tuple ⌧ is a support for a value (X, a) in C iff X 2 scp(C) and ⌧ is a support of
C such that ⌧ [X] = a. Determining if a tuple is allowed is called a constraint check
and determining if a tuple is valid is called a validity check. A value (X, a) of P is
generalized arc-consistent (GAC) iff for every constraint C involving X , there exists a
support for (X, a) in C. A variable X of P is GAC iff dom(X) 6= ; and 8a 2 dom(X),
(X, a) is GAC. P is GAC iff every variable of P is GAC.

It is easy to see that a value (X, a) of P which is not GAC cannot be included in
any solution of P and is therefore inconsistent. Enforcing GAC means making the CN
GAC by removing inconsistent values from domains. Many algorithms are available for
enforcing GAC (or for enforcing AC when the constraints are binary) [2].

In this paper we use MAC which is a complete algorithm that is considered to
provide the most efficient generic approach to the solution of CSP instances. MAC
explores the search space depth-first, backtracks when dead-ends occur, and enforces
(generalized) arc consistency after each decision taken (variable assignment or value
refutation) during search. The depth of a node ⌫ is the number of variable assignments
performed along the path leading from the root of the search tree to ⌫. A past variable
is (explicitly) assigned whereas a future variable is not (explicitly) assigned. fut(C) is
the set of future variables belonging to scp(C). Finally, we emphasise that when GAC
is enforced at a given step of the search, values can be removed only from domains of
future variables.

3 Related Work on GAC for Table Constraints

A positive table constraint is a constraint given in extension and defined by a set of
allowed tuples. Such constraints arise in practice in configuration problems, and more
generally, in problems whose data come from databases. The set of allowed tuples as-
sociated with any constraint C is a table denoted by C.table. The worst-case space
complexity of this table is O(tr) where t = |C.table| denotes the size of the table (i.e.
the number of allowed tuples) and r denotes the arity of C.

GAC can be enforced by focusing in turn on each value in each domain; a value
(X, a) is removed from its domain unless it is included in a support in every constraint
that involves X . The classical generic GAC-valid scheme [5] seeks support by iterating
over valid tuples (i.e. tuples that can be built from the current domains of constraint
variables) until one is found that is allowed (i.e. accepted by the constraint). When
working with table constraints we can instead seek support by iterating over allowed
tuples until one is found to be valid [5]. From now on, these two schemes will be
denoted by GACv and GACa, respectively. The efficiency of both approaches highly
depends on the size of visited lists.

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Recently, new schemes have been proposed, combining the exploitation of both
valid and allowed tuples. In [15], it is shown that it is possible to skip over an expo-
nential (in the arity) number of allowed tuples by reasoning from the current domains
of variables. The key point is to know for each allowed tuple and each value the next
tuple of the table that contains this value. To limit the space complexity of this approach
which is in O(trd), a sophisticated data structure, called hologram [14], can be used.
To further improve the method, the authors propose to exploit lower bounds on supports
such as, e.g., the last structure employed in AC2001/3.1.

Another approach, proposed in [13], involves visiting, in turn, lists of valid and al-
lowed tuples. The principle is to avoid considering irrelevant tuples (when a support
is looked for) by jumping over sequences of valid tuples containing no allowed tuple
and over sequences of allowed tuples containing no valid tuple. This approach admits
on some instances a behaviour quadratic in the arity of the constraints whereas clas-
sical schemes (GACv and GACa) admit an exponential behaviour. Interestingly, this
approach whose worst-case space complexity is O(tr) can be easily grafted to any
generic GAC algorithm.

More recently, two additional data structures have been introduced [8] for table
constraints. The most promising one corresponds to the tree structure called trie. A trie
is a multi-way tree structure useful for storing strings over an alphabet. It can then be
used to store large dictionaries of words. The original proposal in [8] is to represent the
set of tuples of a constraint by a trie, and to explore this trie when looking for supports.
In order to keep cheap the search of supports, the authors suggest to build one trie per
variable (of the scope of the constraint), the first level being dedicated to it. The worst-
case space complexity of the trie approach is O(tr2) but as tuples are compressed at the
top of each trie, one can expect a better memory usage in practice.

Finally, in a recent work [10], an algorithm has been proposed to compress table
constraints. The principle is to represent the initial set of tuples by subsets of the Carte-
sian product of the domains of the variables involved in the constraint. Interestingly,
this approach is also suitable to negative table constraints. Indeed, from an initial set of
disallowed tuples, the authors show it is possible to build a set of compressed allowed
tuples, whose size is at most nd times the size of the original set. Among related ap-
proaches, one can cite the use of directed acyclic graphs (DAGs) [6] and binary decision
diagrams (BDDs) [7].

4 Simple Tabular Reduction

Simple tabular reduction (STR) [18] is another original approach to enforce GAC on
positive table constraints. The principle of STR is to dynamically maintain the tables of
allowed tuples. More precisely, whenever a value is removed from the domain of a vari-
able, the table associated with a constraint involving this variable is updated, removing
all tuples that have become invalid. Values which are no more GAC are then (easily)
identified and removed. To summarize, GAC is enforced while removing invalid tuples,
and consequently, only supports are kept in tables. One related work [16] is the AC
algorithm proposed for the hidden variable encoding.

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

We now formulate in more detail an implementation of STR in which each con-
straint is an object. Recall that C.table contains the initial set of tuples allowed by the
constraint C. Without any loss of generality, we hold this set within an array. The tuple
that is the ith element of C.table, denoted by C.table[i], can be accessed in constant
time. Within C.table, every tuple is a member of exactly one of a set of linked lists
of tuples. One of these lists links all tuples that are currently valid (and consequently
are supports): tuples in this list constitute the contents of the current table of C. Any
tuple of the current table of C will be called a current tuple. To provide access to the
disjoint lists of tuples within C.table we introduce the following additional fields for
each constraint object C:

– C.first is the position (i.e. the subscript) of the first current tuple in C.table.
C.first = �1 if the current table of C is empty.

– removedHead is an array of size n such that C.removedHead[d] is the position
of a first invalid tuple of C.table that was removed when the search was at depth d.
C.removedHead[d] = �1 if none was removed at depth d.

– removedTail is an array of size n such that C.removedTail[d] gives the position
of a last invalid tuple removed at depth d. C.removedTail[d] is relevant only if
C.removedHead[d] 6= �1.

– next is an array of size t = |C.table| that is used for linking lists of tuples. More
precisely, if i is the position of a current tuple of C, then C.next[i] indicates the
position of the next tuple in the current table. C.next[i] = �1 if i is the position
of the last current tuple. Similarly, if i is the position of a tuple removed at depth d,
then C.next[i] indicates the position of the next tuple removed at depth d, except
that C.next[i] = �1 if i is now the position of the last invalid tuple removed at
depth d.

Besides, corresponding to each variable X , we provide a set gacV alues[X] [17]
that will contain all values in dom(X) which are proved to have a support when enforc-
ing GAC on a constraint C. With a O(d) space consumption per variable, one can guar-
antee that all elementary operations (determining if a value is present, adding/removing
a value, etc.) are performed in constant time (see [9, 13]).

To enforce GAC at a given depth on a (positive table) constraint C using STR,
Algorithm 1 is called. The loops at lines 1, 7 and 15 only iterate over future variables
because it is only for these variables that it is possible to remove values from domains.
This is an optimization wrt the original algorithm given in [18]. The sets gacV alues
are emptied at lines 1 and 2 of Algorithm 1 because no value is initially guaranteed
to be GAC. Then, all current tuples of the table of C are considered in turn by the
loop at lines 4 � 14. When a tuple ⌧ is proved to be valid (see Algorithm 2), we know
that it is necessarily a support since it is (by definition) allowed. Values that have been
proved to be GAC are collected at lines 7 to 9. In constant time (see Algorithm 3), at
line 13 an invalid tuple ⌧ is removed from the current table and put (at first position)
into the list of invalid tuples that were removed at the current depth d. Note that ⌧ is
removed without actually being moved in memory. Once all current tuples have been
considered, unsupported values are removed (lines 15 to 20): these are the values in
dom(X) \ gacV alues[X]. If a domain becomes empty then false is returned at line
18 because of inconsistency.

Berthe Choueiry

Berthe Choueiry

Algorithm 1: GACstr(C: Constraint, depth: Integer): Boolean
foreach variable X 2 fut(C) do1

gacV alues[X] ;2

prev �1 ; curr C.first3
while curr 6= �1 do4

⌧ C.table[curr]5
if isV alid(C, ⌧) then6

foreach variable X 2 fut(C) do7
if ⌧ [X] /2 gacV alues[X] then8

add ⌧ [X] to gacV alues[X]9

prev curr ; curr C.next[curr]10

else11
next C.next[curr]12
removeTuple(C, prev, curr, depth)13
curr next14

foreach variable X 2 fut(C) do15
if |gacV alues[X]| 6= |dom(X)| then16

if gacV alues[X] = ; then17
return false18

dom(X) gacV alues[X]19
add X to propagationQueue20

return true21

Algorithm 2: isValid(C: Constraint, ⌧ : Tuple): Boolean
foreach variable X 2 scp(C) do1

if ⌧ [X] /2 dom(X) then2
return false3

return true4

Algorithm 3: removeTuple(C: Constraint, prev, curr, depth: Integers)
if prev = �1 then C.first C.next[curr]1
else C.next[prev] C.next[curr]2
C.next[curr] C.removedHead[depth]3
if C.removedHead[depth] = �1 then C.removedTail[depth] curr4
C.removedHead[depth] curr5

Algorithm 4: restoreTuples(C: Constraint, depth: Integer)
if C.removedHead[depth] 6= �1 then1

C.next[C.removedTail[depth]] C.first2
C.first C.removedHead[depth]3
C.removedHead[depth] �14

To enforce GAC on the constraint network, some events must be recorded: here, a
variable is put in a queue dedicated to propagation (see line 20 of Algorithm 1) when-
ever its domain is reduced. Later, this variable will be picked from the queue, and all
constraints involving this variable will be enforced to be GAC (a call to GACstr will
be performed for a positive table constraint). Also, the code given here can be easily
adapted to take into account finer propagation events.

The worst-case time complexity of GACstr (Algorithm 1) is O(r0d+rt0) where, for
a given constraint C, r0 = |fut(C)| denotes the number of future variables in C and t0

the size of the current table of C. Indeed, loops at lines 1, 4 and 15 are O(r0), O(rt0)
and O(r0d), respectively. The worst-case space complexity of GACstr is O(n + rt) per
constraint since removedHead and removedTail are O(n), table is O(rt) and next
is O(t).

Importantly, when backtracking occurs, values must be restored to domains, as is
well known, and because of domain restoration, tuples that were invalid may now be
valid. If a tuple ⌧ was removed from the current table of C at depth d, then ⌧ must be
restored to the current table of C when the search backtracks to depth d or assigns a
new value at depth d. In our implementation, tuples are restored by calling Algorithm
4. This algorithm puts the list of invalid tuples removed at the given depth at the head of
the current table. Restoration is achieved in constant time (for each constraint) without
traversing either list and without moving any tuple in memory [18].

5 Optimizing STR

It is possible to improve STR in two directions. First, as soon as all values in the do-
main of a variable have been detected GAC, it is futile to continue to seek supports
for values of this variable. We therefore introduce a set, Ssup, of variables in fut(C)
whose domain contains at least one value for which a support has not yet been found.
In GACstr2 (Algorithm 5), which is an optimized version of GACstr, lines 1, 6 and
8 initialize Ssup to be the same as fut(C). Whenever a support is found for the last
unsupported value in the domain of a variable X , line 20 removes X from Ssup. If
|gacV alues[X]| = |dom(X)| at line 19 then all values of dom(X) are supported.
Efficiency is gained by iterating only over variables in Ssup at lines 16 and 26.

The second direction of improvement avoids unnecessary validity operations. At
the end of an invocation of GACstr for constraint C, every tuple ⌧ such that ⌧ [X] 62
dom(X) (with X 2 scp(C)) has been removed from the current table of C. If there is
no backtrack and dom(X) does not change between this invocation and the next invo-
cation, then at the time of this next invocation it is certainly true that ⌧ [X] 2 dom(X)
for every tuple ⌧ in the current table of C. In this case, there is no need to check whether
⌧ [X] 2 dom(X); efficiency is gained by omitting this check. We implement this opti-
mization by means of a set Sval, which is the set of future variables whose domain has
been reduced since the previous invocation of GACstr2. Initially, this set also contains
the last assigned variable (denoted by lastAssignedV ariable here) if it belongs to the
scope of the constraint C. Indeed, after any variable assignment X = a, some tuples
may become invalid due to the removal of some values in dom(X). This is the only
past variable for which validity operations must be performed. Algorithm 6 checks

Berthe Choueiry

validity only for variables in Sval. The set Sval is first initialized at lines 2 through
5 of Algorithm 5. At line 9 of this algorithm, dom(X).getLastRemovedV alue() is
the value that was most recently removed from dom(X) whilst processing this or any
other constraint. A special value nul must be used when no value has been removed.
C.lastRemoved[X] is the value that was most recently removed from dom(X) whilst
processing the specific constraint C (see lines 11 and 30). If these two values differ at
line 9 then dom(X) has changed since the previous invocation of Algorithm 5 for the
specific constraint C. In this case, X is included in Sval at line 10. This is how the
membership of Sval is determined.

The worst-case time complexity of GACstr2 is O(r0(d + t0)). Indeed, performing a
validity check is now O(r0) instead of O(r), as it can be observed from Algorithm 6.
Moreover, the loop starting at line 13 is in O(r0t0). Like GAcstr, the worst-case space
complexity of GACstr2 is O(n + rt) per constraint since data structures inherited from
GACstr are O(n+rt) and lastRemoved is O(r); Ssup and Sval are also O(r) but may
be shared by all constraints.

The worst case scenarii used to develop the worst-case time complexities of both
GACstr and GACstr2 do not entirely characterize the difference in behaviour that may
occur, in practice, between the two algorithms. Let us consider a positive table con-
straint C such that scp(C) = {X1, ..., Xr} and the table initially includes:
(0,0,...,0)

(1,1,...,1)

...

(d-2,d-2,...,d-2)

(d-2,d-1,...,d-1)

...

In this example, the domain of each variable involved in C comprises all digits
from 0 to d� 1. In the table, the first d� 1 tuples are sequences formed with the same
digit (from 0 to d � 2), while the dth tuple consists of the digit d � 2 followed by a
sequence of d � 1. Assume that all variables are future, that STR (either of the two
algorithms) is applied to this constraint and that no value is removed because all values
are present in domains and there also exists a support for (X1, d�1) in C (although this
is not shown above). Now, imagine that (X1, d� 1) is deleted while propagating some
other constraints, whereas all other values remain valid. If STR is applied again to this
constraint, no value will be removed (since the constraint is still GAC), but some tuples
(at least one) will be eliminated. Interestingly, calling GACstr requires O(r) constant
time operations to deal with gacV alues structures (loops starting at line 1 and 15),
O(rt) operations to perform validity checks, O(rt) operations to check GAC values and
O(rd) operations to collect GAC values. On the other hand, calling GACstr2 requires
O(r) operations to deal with gacV alues structures, O(t) operations to perform validity
checks (since Sval = {X1}), O(rd) operations to check GAC values (since Ssup = ;
after the treatment of the first d tuples) and O(rd) operations to collect GAC values.
This is summarized as follows:

Observation 1 There exist situations where applying GACstr to a r-ary constraint C
is O(rt + rd) whereas applying GACstr2 is O(t + rd).

Most of the time, d << t since t 2 O(dr). In this case, Observation 1 shows that
GACstr2 is potentially r times faster than GACstr. The higher the arity, the greater the

Algorithm 5: GACstr2(C: Constraint, depth: Integer): Boolean
Ssup ;1
if lastAssignedV ariable /2 scp(C) then2

Sval ;3
else4

Sval {lastAssignedV ariable}5

foreach variable X 2 fut(C) do6
gacV alues[X] ;7
Ssup Ssup [{X}8
if dom(X).getLastRemovedV alue() 6= C.lastRemoved[X] then9

Sval Sval [{X}10
C.lastRemoved[X] dom(X).getLastRemovedV alue()11

prev �1 ; curr C.first12
while curr 6= �1 do13

⌧ C.table[curr]14
if isV alid(C, ⌧) then15

foreach variable X 2 Ssup do16
if ⌧ [X] /2 gacV alues[X] then17

add ⌧ [X] to gacV alues[X]18
if |gacV alues[X]| = |dom(X)| then19

Ssup Ssup \ {X}20

prev curr ; curr C.next[curr]21

else22
next C.next[curr]23
removeTuple(C, prev, curr, depth)24
curr next25

foreach variable X 2 Ssup do26
if gacV alues[X] = ; then27

return false28

dom(X) gacV alues[X]29
C.lastRemoved[X] dom(X).getLastRemovedV alue()30
add X to propagationQueue31

return true32

Algorithm 6: isValid(C: Constraint, ⌧ : Tuple): Boolean
foreach variable X 2 Sval do1

if ⌧ [X] /2 dom(X) then2
return false3

return true4

benefit of using GACstr2 may be. Finally, one may wonder about backtracking issues.
A first solution, when backtracking occurs, is to reinitialize all arrays lastRemoved,
filling them with the special value nul. Alternatively, one may record the content of
such arrays at each depth of search. Upon backtracking, one can then benefit from the
original state of the arrays. This approach, which requires an additional structure that is
O(nr) per constraint, will be denoted by GACstr2+.

6 Experimental Results

In order to show the practical interest of simple tabular reduction, and in particular
the optimization we propose, we have experimented using a cluster of Xeon 3.0GHz
with 1GiB of RAM under Linux, employing MAC with dom/ddeg and lexico as vari-
able1 and value ordering heuristics, respectively. We have compared classical schemes
to enforce GAC on (positive) table constraints with STR. More precisely, we have im-
plemented GACv and GACa (see Section 3) as well as the scheme described in [13],
denoted by GACva here. We do believe that GACva is a representative state-of-the-art
algorithm for table constraints. Our own experience confirms the results reported in [8]:
GACva and the trie approach are quite robust and close in terms of performance.

We have performed a first experimentation with random CSP instances. We have
generated different classes of instances from Model RD [20]. Each generated class
hr, 60, 2, 20, ti contains 20 CSP instances involving 60 Boolean variables and 20 r-
ary constraints of tightness t. Whatever the arity r � 8 is, Theorem 2 [20] holds: an
asymptotic phase transition is guaranteed at the threshold point tcr = 0.875. It means
that the hardest instances are generated when the tightness t is close to tcr. Figure 1
shows the mean cpu time required to solve 20 instances of each class h13, 60, 2, 20, ti
where t ranges from 0.8 to 0.96. On these instances of intermediate difficulty, we can
observe that STR is far more efficient than classical schemes (including GACva). When
focusing on STR algorithms, Figures 2 and 3 clearly confirm the general observation
made in Section 5 about the increasing interest of using GACstr2(+) when the arity of
the constraints increases. Indeed, while GACstr2+ is about 20% faster than GACstr (at
the threshold) when the arity of constraints is 10, it becomes two times faster when the
arity of constraints is 16. Similar results have been obtained with larger domains.

Next, we have experimented on series of (random and structured) CSP instances in-
volving table constraints, that are available from http://www.cril.univ-artois.

fr/˜lecoutre/. These series represent a large spectrum of instances, and importantly,
allow anyone to easily reproduce our experimentation. The two first series [7] bdd-21-
2713-15 and bdd-21-133-18 contain 35 instances each, involving 21 Boolean variables
and large and small BDD constraints of arity 15 and 18, respectively. The series renault-
mod contains 45 real-world instances (we were unable to solve 5 of them with the se-
lected heuristics within a reasonable amount of time) involving domains containing up
to 42 values and constraints of various arity defined by large tables (the greatest one
contains about 50, 000 6-tuples). The two series tsp-20 and tsp-25 contain 15 instances
of the Travelling Salesperson Problem each, involving domains containing up to 1, 000

1 In our implementation, using dom/wdeg does not guarantee exploring the same search tree
with classical and STR schemes.

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

cp
u

(in
 se

co
nd

s)

t (tightness)

GACa
GACv

GACva
GACstr

GACstr2
GACstr2+

Fig. 1. Mean search cost of solving instances in classes h13, 60, 2, 20, ti with MAC.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

cp
u

(in
 se

co
nd

s)

t (tightness)

GACstr
GACstr2

GACstr2+

 0

 2

 4

 6

 8

 10

 12

 14

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

cp
u

(in
 se

co
nd

s)

t (tightness)

GACstr
GACstr2

GACstr2+

Fig. 2. Mean search cost for classes h10, 60, 2, 20, ti (left) and h12, 60, 2, 20, ti (right).

 0

 50

 100

 150

 200

 250

 300

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

cp
u

(in
 se

co
nd

s)

t (tightness)

GACstr
GACstr2

GACstr2+

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

cp
u

(in
 se

co
nd

s)

t (tightness)

GACstr
GACstr2

GACstr2+

Fig. 3. Mean search cost for classes h14, 60, 2, 20, ti (left) and h16, 60, 2, 20, ti (right).

Berthe Choueiry

Classical GAC schemes Simple Tabular Reduction
Series #Inst GACv GACa GACva GACstr GACstr2 GACstr2+

bdd-21-2713-15 35 69.3 386 58.8 164 94.5 52.1
bdd-21-133-18 35 37.3 (23 out) 36.0 66.1 38.3 26.2

renault-mod 45 83.8 45.7 48.0 61.6 54.9 45.4
tsp-20 15 28.4 23.3 14.9 8.80 8.95 8.35
tsp-25 15 254 273 196 119 122 118

rand-8-20-5-18 20 107 (16 out) 119 108 81.2 65.6
rand-10-20-10-5 20 (20 out) 4.49 5.61 1.00 0.77 0.53

Table 1. Mean cpu time (in seconds) to solve instances of different series (a time-out of 1, 200
seconds was set per instance).

values and ternary constraints defined by large tables (about 20, 000 3-tuples). Finally,
the two series rand-8-20-5-18 and rand-10-20-10-5 contain 20 random instances each
involving 20 variables. Each instance of the series rand-8-20-5-18 (resp., rand-10-20-
10-5) involves domains containing 5 (resp., 10) values and 18 (resp., 5) constraints of
arity 8 (resp., 10). Tables contain about about 78, 000 and 10, 000 tuples, respectively.

Table 1 indicates the mean cpu time required to solve the instances of these different
series. Overall, we can observe that GACstr2+ is always the most efficient approach. In
particular, GACstr2+ is 3 times faster than GACstr on the bdd-21-2713-15 series and
10 times faster than GACva on the rand-10-20-10-5 series. Table 2 presents the results
obtained on some representative instances. Here, for each series, we show the results
for 2 or 3 instances of various difficulty. For example, the instance bdd-21-133-18-10
only requires visiting 21 nodes (to be solved) whereas the instance bdd-21-133-18-11
requires visiting 14, 716 nodes. Typically, when the instance is easy, using STR is rather
penalising. This is not really surprising since managing dynamic tables is then just an
overhead. This is particularly visible for easy instances of series bdd-21-2713-15 and
bdd-21-133-18. In terms of memory, the difference of memory consumption between all
algorithms is at most by a factor 2. Note that the additional structure in O(nd) required
by GACstr2+ has a very limited practical impact on all these series.

Finally, we have tested the series of Crossword puzzles that have been recently
posted at the web page mentioned earlier. For each grid, there is a variable per white
square which can be assigned any of the 26 letters of the Latin alphabet, and a constraint
for any sequence of white squares which corresponds to a word that we must put in
the grid. Such constraints are defined by a table which contains all words of the right
length. The series prefixed by cw-m1c are defined from blank grids and only contain
positive table constraints (contrary to model m1 in [1] where no two identical words
can be put in the grid, which is then naturally expressed in intension). The arity of the
constraints is given by the size of the grids: for example, cw-m1c-lex-vg5-6 involves
table constraints of arity 5 and 6 (the grid being 5 by 6). The results that we have
obtained (see Table 3) with respect to 4 dictionaries (lex, words, uk, ogd) of different
length confirm our previous results. On the most difficult instances, GACstr2+ is about
two times faster than GACstr and one order of magnitude faster than GACva. Note
that we do not provide mean results for these series because many instances cannot be
solved within 1, 200 seconds.

Berthe Choueiry

Classical GAC schemes Simple Tabular Reduction
Instance GACv GACa GACva GACstr GACstr2 GACstr2+

bdd-21-133-18-10 cpu 0.82 0.93 0.93 7.18 3.62 3.57
#nodes=21 mem 39M 43M 43M 63M 63M 63M

bdd-21-133-18-2 cpu 38.7 > 1, 200 38.7 68.1 38.6 25.9
#nodes=10, 660 mem 61M 72M 127M 127M 126M

bdd-21-133-18-11 cpu 58.4 > 1, 200 53.6 104 61.1 43.9
#nodes=14, 716 mem 46M 59M 100M 101M 101M

bdd-21-2713-15-22 cpu 0.81 0.74 0.81 13.8 5.85 5.97
#nodes=21 mem 91M 93M 93M 165M 166M 175M

bdd-21-2713-15-32 cpu 61.5 357 55.1 145 82.7 44.5
#nodes=1, 140 mem 73M 74M 74M 166M 167M 176M

bdd-21-2713-15-35 cpu 78.6 372 71.9 193 121 66.1
#nodes=1, 465 mem 73M 74M 74M 167M 168M 177M

renault-mod-0 cpu 11.1 1.05 1.04 1.05 0.99 1.04
#nodes=287 mem 36M 41M 41M 34M 34M 34M

renault-mod-12 cpu 149 92.2 88.9 92.4 83.7 77.6
#nodes=415K mem 39M 52M 52M 49M 49M 50M

renault-mod-14 cpu 411 321 318 384 359 302
#nodes=1, 135K mem 40M 51M 51M 66M 66M 68M

tsp-20-190 cpu 6.02 6.91 5.56 4.89 4.98 4.59
#nodes=7, 738 mem 12M 12M 12M 10M 10M 10M

tsp-20-366 cpu 37.0 41.6 32.9 25.2 25.7 23.5
#nodes=31, 701 mem 10M 10M 9, 731K 9, 115K 9, 124K 9, 261K

tsp-20-193 cpu 291 207 146 99.2 101 91.6
#nodes=80, 849 mem 16M 17M 16M 17M 17M 17M

tsp-25-13 cpu 4.23 3.2 3.03 3.03 3.07 2.86
#nodes=2, 421 mem 20M 20M 20M 17M 17M 17M

tsp-25-163 cpu 178 205 140 108 105 105
#nodes=89, 883 mem 15M 15M 14M 15M 15M 16M

tsp-25-456 cpu 1, 060 1, 140 813 643 642 683
#nodes=686K mem 28M 28M 26M 40M 40M 42M

rand-10-20-10-5-10 cpu > 1, 200 3.86 2.59 0.58 0.51 0.43
#nodes=794 mem 20M 20M 16M 16M 16M

rand-10-20-10-5-0 cpu > 1, 200 4.59 3.22 1.19 1.36 0.83
#nodes=826 mem 23M 23M 20M 20M 20M

rand-8-20-5-18-10 cpu 42.7 > 1, 200 51.8 50.9 39.4 31.8
#nodes=57, 579 mem 193M 283M 205M 205M 205M

rand-8-20-5-18-13 cpu 420 > 1, 200 403 241 186 153
#nodes=569K mem 196M 291M 221M 221M 221M

Table 2. Representative results obtained on various structured and random instances. Cpu time
is given in seconds and mem(ory) in MiB. The number of nodes (#nodes) explored by MAC is
given below the name of each instance.

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

Classical GAC schemes Simple Tabular Reduction
GACv GACa GACva GACstr GACstr2 GACstr2+

Crossword puzzles with dictionary lex (24, 974 words)
cw-m1c-lex-vg5-6 cpu > 1, 200 38.8 54.2 14.3 12.4 10.7

#nodes=26, 679 mem 2, 889K 2, 928K 2, 932K 2, 935K 2, 968K

cw-m1c-lex-vg5-7 cpu > 1, 200 357 875 134 114 96.3
#nodes=171K mem 4, 134K 4, 173K 8, 005K 8, 055K 8, 059K

cw-m1c-lex-vg6-6 cpu > 1, 200 2.98 4.29 1.28 1.05 0.91
#nodes=1, 602 mem 4, 422K 4, 344K 4, 226K 4, 203K 4, 296K

cw-m1c-lex-vg6-7 cpu > 1, 200 436 1, 174 176 143 118
#nodes=152K mem 5, 887K 5, 692K 9, 458K 9, 437K 9, 555K

Crossword puzzles with dictionary words (45, 371 words)
cw-m1c-words-vg5-5 cpu > 1, 200 0.04 0.05 0.05 0.05 0.04

#nodes=38 mem 4, 969K 4, 987K 4, 823K 4, 791K 4, 809K

cw-m1c-words-vg5-6 cpu > 1, 200 1.19 1.46 0.48 0.37 0.33
#nodes=718 mem 6, 508K 6, 526K 6, 348K 6, 273K 6, 348K

cw-m1c-words-vg5-7 cpu > 1, 200 18.6 36.0 6.61 5.21 4.03
#nodes=6, 957 mem 8, 470K 8, 489K 8, 276K 8, 145K 8, 237K

cw-m1c-words-vg5-8 cpu > 1, 200 866 > 1, 200 273 229 187
#nodes=256K mem 4, 604K 10M 10M 10M

Crossword puzzles with dictionary uk (225, 349 words)
cw-m1c-uk-vg5-5 cpu > 1, 200 0.05 0.05 0.1 0.07 0.07

#nodes=28 mem 12M 12M 12M 12M 12M

cw-m1c-uk-vg5-6 cpu > 1, 200 0.55 0.5 0.21 0.17 0.17
#nodes=145 mem 17M 17M 16M 16M 16M

cw-m1c-uk-vg5-7 cpu > 1, 200 2.97 5.18 0.51 0.37 0.34
#nodes=408 mem 22M 22M 22M 22M 22M

cw-m1c-uk-vg5-8 cpu > 1, 200 82.5 71.9 7.08 5.71 4.78
#nodes=8, 148 mem 12M 12M 11M 11M 11M

Crossword puzzles with dictionary ogd (435, 705 words)
cw-m1c-ogd-vg6-6 cpu > 1, 200 0.37 0.31 0.23 0.17 0.15

#nodes=98 mem 46M 47M 46M 46M 48M

cw-m1c-ogd-vg6-7 cpu > 1, 200 95.3 56.1 12.0 8.01 6.81
#nodes=9, 522 mem 11M 11M 11M 11M 11M

cw-m1c-ogd-vg6-8 cpu > 1, 200 53.0 6.44 2.91 2.0 1.72
#nodes=2, 806 mem 24M 23M 22M 22M 24M

cw-m1c-ogd-vg6-9 cpu > 1, 200 727 214 35.1 25.1 19.1
#nodes=23, 283 mem 42M 41M 39M 37M 40M

Table 3. Representative results obtained on series of Crossword puzzles using dictionaries of dif-
ferent length. Cpu time is given in seconds and mem(ory) in MiB. The number of nodes (#nodes)
explored by MAC is given below the name of each instance.

7 Conclusion

Simple tabular reduction (STR) [18] is a simple and effective GAC algorithm for posi-
tive table constraints. In this paper, we have proposed an optimization of this algorithm
which significantly improves its efficiency. This new algorithm (GACstr2+) appears
among state-of-the-art GAC algorithms for non-binary table constraints.

Acknowledgments
We would like to thank Julian Ullmann for fruitful discussions and helpful comments.

References
1. A. Beacham, X. Chen, J. Sillito, and P. van Beek. Constraint programming lessons learned

from crossword puzzles. In Proceedings of Canadian Conference on AI, pages 78–87, 2001.
2. C. Bessiere. Constraint propagation. In Handbook of Constraint Programming, 2006.
3. C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency algorithms.

In Proceedings of IJCAI’05, pages 54–59, 2005.
4. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of reasoning with global

constraints. Constraints, 12(2):239–259, 2007.
5. C. Bessiere and J. Régin. Arc consistency for general constraint networks: preliminary re-

sults. In Proceedings of IJCAI’97, pages 398–404, 1997.
6. M. Carlsson. Filtering for the case constraint. Samos, Greece, 2006. Talk given at Advanced

School on Global constraints.
7. K. Cheng and R. Yap. Maintaining generalized arc consistency on ad-hoc n-ary Boolean

constraints. In Proceedings of ECAI’06, pages 78–82, 2006.
8. I.P. Gent, C. Jefferson, I. Miguel, and P. Nightingale. Data structures for generalised arc

consistency for extensional constraints. In Proceedings of AAAI’07, pages 191–197, 2007.
9. P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm and its

specializations. Artificial Intelligence, 57:291–321, 1992.
10. G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional constraints.

In Proceedings of CP’07, pages 379–393, 2007.
11. C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consistency. In

Proceedings of IJCAI’05, pages 199–204, 2005.
12. C. Lecoutre, S. Cardon, and J. Vion. Conservative dual consistency. In Proceedings of

AAAI’07, pages 237–242, 2007.
13. C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table constraints. In

Proceedings of CP’06, pages 284–298, 2006.
14. O. Lhomme. Arc-consistency filtering algorithms for logical combinations of constraints. In

Proceedings of CPAIOR’04, pages 209–224, 2004.
15. O. Lhomme and J.C. Régin. A fast arc consistency algorithm for n-ary constraints. In

Proceedings of AAAI’05, pages 405–410, 2005.
16. N. Samaras and K. Stergiou. Binary encodings of non-binary constraint satisfaction prob-

lems: algorithms and experimental results. JAIR, 24:641–684, 2005.
17. J.R. Ullmann. A binary n-gram technique for automatic correction of substitution, deletion,

insertion and reversal errors in words. Computer Journal, 20(2):141–147, 1977.
18. J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information Science,

177:3639–3678, 2007.
19. M.R.C. van Dongen. Beyond singleton arc consistency. In ECAI’06, pages 163–167, 2006.
20. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfaction: easy

generation of hard (satisfiable) instances. Artificial Intelligence, 171(8-9):514–534, 2007.

Berthe Choueiry

