
Optimal and Suboptimal Singleton Arc

Consistency Algorithms

Christian Bessiere1 and Romuald Debruyne2

1 LIRMM-CNRS, 161 rue Ada F-34392 Montpellier Cedex 5
bessiere@lirmm.fr

2 École des Mines de Nantes, 4 rue Alfred Kastler, F-44307 Nantes Cedex 3
romuald.debruyne@emn.fr

Abstract. Singleton arc consistency (SAC) is a local consistency that
ensures that a constraint network can be made arc consistent after any
assignment of a value to a variable. A first contribution of this paper is
to show experimentally that the optimal-time algorithm proposed in [5]
(which was analyzed only theoretically) is efficient in practice compared
to previous SAC algorithms. However, it can be costly in space on large
problems, even with the small improvements we propose at the beginning
of this paper. To reduce this space consumption, we propose another
SAC algorithm requiring less space but no longer optimal in time. An
experimental study on random problems highlights the good performance
of this second algorithm.

1 Introduction

Ensuring that a given local consistency does not lead to a failure when we enforce
it after having assigned a variable to a value is a common idea in constraint
solving. It has been applied (sometimes under the name ’shaving’) in constraint
problems with numerical domains by limiting the assignments to bounds in the
domains and ensuring that bounds consistency does not fail [13]. In SAT, it
has been used as a way to compute more accurate heuristics for DPLL [10, 14].
Finally, in constraint satisfaction problems (CSPs), it has been proposed and
studied under the name Singleton Arc Consistency (SAC) ([9, 19]).

Some nice properties give to SAC a real advantage over the other local consis-
tencies enhancing the ubiquitous arc consistency. Its definition is much simpler
than restricted path consistency [3], max-restricted-path consistency [8], or other
exotic local consistencies, and its operational semantics can be understood by a
non-completely-expert of the field. Enforcing it only removes values in domains,
and thus does not change the structure of the problem, as opposed to path con-
sistency [17], k-consistency [11], etc. Finally, implementing it can be done simply
on top of any AC algorithm.

Non optimal SAC algorithms were proposed in [9] and [1] while an optimal
one has recently been described in [5]. In Section 3 of this paper, we rewrite
the algorithm proposed in [5] in a slight different way that does not change
its worst-case time and space complexities while improving slightly its practical

performance. We call it SAC-Opt. However, the optimal time complexity is kept
at the cost of a high space complexity that prevents the use of this algorithm
on large problems. We then propose in Section 4 another SAC algorithm, SAC-
SDS, with a better worst-case space complexity but no longer optimal in time.
Nevertheless, its time complexity remains better than the other SAC algorithms
proposed in the past. The experiments presented in Section 5 highlight the good
performance of both SAC-Opt and SAC-SDS.

2 Preliminaries

A finite constraint network P consists of a finite set of n variables X = {i, j, . . .},
a set of domains D = {Di, Dj , . . .}, where the domain Di is the finite set of
values that variable i can take, and a set of constraints C = {c1, . . . , cm}. Each
constraint ci is defined by the ordered set var(ci) of the variables it involves, and
a set sol(ci) of allowed combinations of values. An assignment of values to the
variables in var(ci) satisfies ci if it belongs to sol(ci). A solution to a constraint
network is an assignment of a value from its domain to each variable such that
every constraint in the network is satisfied. We will use cij to refer to sol(c) when
var(c) = (i, j). Φ(P) denotes the network obtained after enforcing Φ-consistency
on P .

Definition 1 A constraint network P = (X, D, C) is said to be Φ-inconsistent

iff Φ(P) has some empty domains or empty constraints.

Definition 2 A constraint network P = (X, D, C) is singleton arc consis-

tent iff ∀i ∈ X, ∀a ∈ Di, the network P |i=a obtained by replacing Di by the

singleton {a} is not arc inconsistent.

3 An Optimal Algorithm for SAC

SAC-1 [9] has no data structure storing on which values rely the SAC consis-
tency of each value. After a value removal, SAC-1 must check again the SAC
consistency of all the other values.

SAC-2 [1] uses the fact that if we know that AC does not lead to a wipe
out in P |i=a then the SAC consistency of (i, a) holds as long as all the values
in AC(P |i = a) are in the domain. After the removal of a value (j, b), SAC-2
checks again the SAC consistency of all the values (i, a) such that (j, b) was in
AC(P |i=a). This leads to a better average time complexity than SAC-1 but the
data structures of SAC-2 are not sufficient to reach optimality since SAC-2 may
waste time redoing the enforcement of AC in P |i=a several times from scratch.

Algorithm 1, called SAC-Opt, is an algorithm that enforces SAC in O(end3),
the lowest time complexity which can be expected. (See [5]).

The idea behind such an optimal algorithm is that we don’t want to do and
redo (potentially nd times) arc consistency from scratch for each subproblem
P |j=b each time a value (i, a) is found SAC inconsistent. (Which represents

Algorithm 1: The optimal SAC algorithm

procedure SAC-Opt(in P :Problem);
/* init phase */;

1 P ← AC(P) ;PendingList← ∅;
foreach (i, a) ∈ D do Pia ← nil;

2 foreach (i, a) ∈ D do

3 Pia ← P /* we copy the network and its data structures */;
4 if not(propagateAC(Pia, Di \ {a})) then

5 D ← D \ {(i, a)};
6 propagateAC (P, {(i, a)});

foreach Pjb 6= nil such that (i, a) ∈ Pjb do

7 Qjb ← Qjb ∪ {(i, a)};
8 PendingList← PendingList ∪ Pjb;

/* propag phase */;
9 while PendingList 6= ∅ do

pop Pia from PendingList;
10 if not(propagateAC(Pia, Qia)) then

11 D ← D \ {(i, a)};
foreach (j, b) ∈ D such that (i, a) ∈ Pjb do

12 Qjb ← Qjb ∪ {(i, a)};
13 PendingList← PendingList ∪ Pjb;

n2d2 potential arc consistency calls.) To avoid such costly repetitions of arc
consistency calls, we duplicate the problem nd times, one for each value (i, a), so
that we can benefit from the incrementality of arc consistency on each of them.
An AC algorithm is called ’incremental’ when its complexity on a problem P is
the same for a single call or for up to nd calls, where two consecutive calls differ
only by the deletion of some values from P . The generic AC algorithms are all
incremental.

SAC-Opt can be decomposed in several sequential steps. In the following,
propagateAC(P, S) denotes the function that incrementally propagates in P the
removal of the set S of values when an initial AC call has already been executed,
initializing the data structures required by the AC algorithm in use.

First, after some basic initializations and making the problem arc consistent
(line 1), the loop in line 2 duplicates nd times the arc consistent problem ob-
tained in line 1, and propagates the removal of all the values different from a for
i in each P |i=a, denoted Pia (line 4). If a subproblem Pia has no arc consistent
subdomain, the removal of (i, a) is propagated in P (line 6). The subproblems
corresponding to the subsequent steps of the loop will benefit from this propa-
gation because they are created by duplication of P (line 3).3 For each already

3 This is the main difference between SAC-Opt and the algorithm presented in [5].
SAC-Opt will thus build less and smaller subproblems.

checked subproblem Pjb having (i, a) in its domain, (i, a) is put in Qjb for future
propagation (line 7).

Once this initialization phase has finished, the removal of all SAC inconsistent
value has been propagated in all the subproblems except in those in PendingList.
Each problem Pjb in PendingList contains the removals that must be propagated
in its local propagation list Qjb. During the whole loop of the propagation phase,
if the AC propagation of a list Qia in a subproblem Pia fails (line 10), (i, a) is
removed from D, and the list Qjb of each subproblem Pjb having (i, a) in its
domain is updated for a future propagation of this removal.

When PendingList is empty, all the removals have been propagated in the
subproblems and all the values in D are SAC consistent.

Theorem 1 SAC-Opt is a correct SAC algorithm with O(end3) optimal worst-

case time complexity and O(end2) worst-case space complexity.

Proof. (See [5].)

Remarks. We can remark that the Q lists contain values to be propagated. This
is written like this because the AC algorithm chosen is not specified here, and
value removal is the most accurate information we can have. If the AC algorithm
chosen is AC-6 [4], AC-7 [6] , or AC-4 [16], the lists will be directly used like
this. If it is AC-3 [15] or AC-2001 [7], only the variables from which the domain
has changed are necessary. This last information is trivially obtained from the
list of removed values.

We can also point out that if AC-3 is used, we decrease the space complexity
to O(n2d2), but time complexity increases to O(end4) since AC-3 is not optimal.

4 Losing Time Optimality to Save Space

SAC-Opt cannot be used on large constraint networks because of its O(end2)
space complexity. Moreover, it seems difficult to reach optimal time complexity
with smaller space requirements. Indeed, a SAC algorithm has to enforce AC in
each subproblem P |i=a and to be optimal in time it must store sufficient data
to never redo some work in a subproblem. Optimal AC algorithms use at least
a space in O(ed) and it seems therefore unavoidable that an optimal time SAC
algorithm requires nd times more space.

In this section we propose to relax time optimality to reach a satisfactory
trade-off between space and time. To avoid a too general discussion, we instanti-
ate this idea on a AC-2001 oriented SAC algorithm. The “suboptimal” algorithm
we present uses AC-2001 data structures, but the same idea could be imple-
mented with other low-space optimal AC algorithms such as AC-6 and AC-7.
The algorithm SAC-SDS (’Sharing Data Structures’) tries to use the incremen-
tality of the AC algorithms to avoid redundant work, without duplicating on
each subproblem P |i=a the data structures required by optimal AC algorithms.
This algorithm requires less space than SAC-Opt but is not optimal in time.

Algorithm 2: The SAC-SDS algorithm

procedure SAC-SDS-2001 (in P : Problem);
1 P ← AC-2001(P) ; PendingList← ∅;
2 foreach (i, a) ∈ D do

3 SupportSAC
ia ← nil ; Qia ← {i}; PendingList ← PendingList ∪ {(i, a)};

4 while PendingList 6= ∅ do

pop (i, a) from PendingList ;
if a ∈ Di then

5 if SupportSAC
ia = nil then SupportSAC

ia ← (D \Di) ∪ {(i, a)};
6 if not(propagateSubAC((X, SupportSAC

ia , C), Qia)) then

7 Di ← Di \ {a} ;
8 updateSubproblems ((i, a)) ;
9 propagateAC ((X, D, C), {i}) ;

function propagateAC (in (X, D, C): Problem, in Q: set): Boolean;
while Q 6= ∅ do

pop j from Q ;
foreach i ∈ X such that ∃Cij ∈ C do

foreach a ∈ Di such that Lastija 6∈ Dj do

10 if ∃b ∈ Dj such that b > Lastija ∧ Cij(a, b) then

11 Lastija ← b /* not in propagateSubAC */;

else

12 Di ← Di \ {a} ;
Q← Q ∪ {i} ;

13 updateSubproblems ((i, a)) /* not in propagateSubAC */;

if Di = ∅ then return false;

return true;
procedure updateSubproblems(in (i, a): Value);

foreach (j, b) ∈ D such that (i, a) ∈ SupportSAC
jb do

14 SupportSAC
jb ← SupportSAC

jb \ {(i, a)} ;
Qjb ← Qjb ∪ {i} ;

15 PendingList← PendingList ∪ {(j, b)} ;

The main idea in SAC-SDS is that for each value (i, a), we store a local
propagation list and the domain of AC(P |i=a), denoted by SupportSAC

ia and
called its SAC-support. Thanks to these SAC-supports, we know which values
may no longer be SAC consistent after a removal. These SAC-supports are also
used to follow the AC enforcement in each subproblem P |i=a with the domains
in the state in which they were at the end of the last AC propagation.

SAC-SDS-2001 relies on AC-2001. The data structure Last of this algorithm
will be used for the propagation of AC in P but it will also be used to help the
enforcement of AC in the subproblems P |i=a. This data structure is therefore
shared since it is not duplicated while being used for achieving AC in P and all
the subproblems P |i=a.

In SAC-SDS-2001, a value (i, a) is in PendingList if some removals have to
be propagated in P |i=a. In such a case, Qia is a non empty list composed of
all the variables j such that values in Dj have been removed since the last
AC enforcement in P |i=a. After some initializations, SAC-SDS-2001 repeat-
edly pops a value from PendingList and propagates AC in (X, SupportSAC

ia , C),
namely P |i=a, since SupportSAC

ia is the current domain of P |i=a. Remark that if
SupportSAC

ia = nil this is the first enforcement of AC in P |i=a and SupportSAC
ia

must be initialized (line 5). If P |i=a is arc inconsistent, (i, a) is not SAC consis-
tent. It is therefore removed from P (line 7) and from the subproblems (using
updateSubproblems in line 8) before the propagation of this removal (line 9).

The function propagateSubAC used to propagate arc consistency in the sub-
problems is almost similar to propagateAC in AC-2001. The difference comes
from line 11 where the structure Last is not updated. Indeed, this data structure
is useful to achieve AC in the subproblems more quickly (line 10) since we know
that there is no support for (i, a) on Cij lower than Lastija in P (and so in sub-
problems) but since this data structure is not duplicated for each subproblem it
must not be updated by propagateSubAC.

Obviously, while achieving AC in P using propagateAC the data structure
Last is updated and the only difference with AC-2001 is the line 13 where
updateSubproblems is used to remove the SAC inconsistent value (i, a) in all
the subproblems and to update the local propagation lists for future propaga-
tion of these removals.

By using updateSubproblems, SAC-SDS-2001 tries to avoid redoing the same
propagations in all the subproblems. Each removal of a SAC inconsistent value
is first propagated in P before being propagated in the subproblems. Thanks to
updateSubproblems, all the subproblems will benefit from the removals in P .

Theorem 2 SAC-SDS is a correct SAC algorithm with O(end4) time complexity

and O(n2d2) space complexity.

Proof. Correctness. Note first that the structure Last is updated only while
achieving AC in P so that any support of (i, a) in Dj is greater than or equal to
Lastija. The domains of the subproblems being subdomains of D, any support
of a value (i, a) on Cij in a subproblem is also greater or equal to Lastija. This
explains that propagateSubAC can benefit (line 10) from the structure Last

without losing any support.
Suppose that SAC-SDS-2001 is not sound on a problem P and let (i, a) be

the first SAC consistent value it removes while it should not. If (i, a) is removed
at line 7 it would be a SAC inconsistent value since only deleted values are
put in the local propagation lists and by assumption any previously removed
value is SAC-inconsistent. So, (i, a) is removed at line 9 because it is no longer
arc consistent after the removal of some SAC inconsistent values and (i, a) is
therefore not SAC consistent. So, any removed value is SAC inconsistent and
SAC-SDS-2001 is sound.

Completeness comes from the fact that any deletion is propagated. After
the initialization (lines 2-3), PendingList = D and so, the main loop of SAC-
SDS-2001 considers any subproblem P |i=a at least once. Each time a value (i, a)

is found SAC inconsistent in P , because P |i=a is arc inconsistent (line 6) or
because the deletion of some SAC-inconsistent values make it arc inconsistent
in P (lines 9 and 12 of propagateAC), (i, a) is removed from the subproblems
(using updateSubproblems and PendingList) and the local propagation lists are
updated for future propagation. At the end of the main loop, PendingList is
empty, so all the removals have been propagated and for any value (i, a) ∈ D

SupportSAC
ia is a non empty arc consistent subdomain of P |i=a.

Complexity. The data structure Last requires a space in O(ed). Each of the
nd SupportSAC

ia can contain nd values and there is at most n variables in the
nd local propagation lists. Since e < n2, the space complexity of SAC-SDS-2001
is in O(n2d2). So, considering space requirements, SAC-SDS-2001 is similar to
SAC-2 [1].

Regarding time complexity, SAC-SDS-2001 first duplicates the data struc-
tures and propagates arc consistency on each subproblem (lines 5 and 6), two
tasks which are respectively in nd ·nd and nd · ed2. Each value removal is propa-
gated to all P |i=a problems via an update of PendingList and SupportSAC

ia sets
(lines 8 and 13). This requires nd · nd operations. Each subproblem can in the
worst case be called nd times for arc consistency, and there are nd subprob-
lems. The domains of each subproblem are stored so that the AC propagation
is launched with the domains in the state in which they were at the end of the
previous AC propagation in the subproblem. Thus, in spite of the several AC
propagations on a subproblem, a value will be removed at most once and, thanks
to incrementality of arc consistency, the propagation of these nd value removals
is in O(ed3). (Remark that we cannot reach the optimal ed2 complexity for arc
consistency on these subproblems since we do not duplicate the data structures
necessary for AC optimality.) Thus the total cost of arc consistency propagations
is nd · ed3. The total time complexity is O(end4). ut

As SAC-2, SAC-SDS performs a better propagation than SAC-1 since after
the removal of a value (i, a) from D, SAC-SDS checks the arc consistency of
the subproblems P |j=b only if they have (i, a) in their domains (and not all the
subproblems as SAC-1). But this is not sufficient to have a better worst-case
time complexity than SAC-1. The time complexity of SAC-2 is indeed O(en2d4)
as SAC-1. SAC-SDS improves this complexity because it does not propagate in
the subproblems from scratch since the current domain of each subproblem is
stored (using SupportSAC). Furthermore, we can expect a better average time
complexity since the shared structure Last can reduce the number of arc con-
sistency tests required. Finally, SAC-SDS does not duplicate data structures to
test the arc consistency of a subproblem, so, no restoration of data structures is
required after such a test.

5 Experimental Results

To compare the performances of the SAC algorithms, we used the random uni-
form constraint network generator of [12] which produces instances according to
the Model B [18]. All the algorithms have been implemented in C++. SAC-1 and

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90
1E-2

1E-1

1E0

1E+1

1E+2

SAC-1-4

SAC-1-6

SAC-1-2001

SAC-Opt-2001

SAC-2-4

SAC-2-6

SAC-2-2001

SAC-SDS-2001

Tightness

cpu time (in sec.)
n=100, d=20, and density=.05

.77

Zoom with a non
logarithmic scale

.75.73.71.69.67

2

0

4

6

8

10

12

14

16

Fig. 1. cpu time results on constraint networks with n=100, d=20, and density=.05.

SAC-2 have been tested using several AC algorithms. In the following, we note
AC-1-X, AC-2-X and SAC-Opt-X the versions of SAC-1, SAC-2 and SAC-Opt
based on AC-X. Note that for SAC-2 the implementation of the propagation list
has been done according to the recommendations made in [2, 1].

5.1 Experiments on sparse constraint networks

Fig. 1 presents cpu time performances on constraint networks having 100 vari-
ables, 20 values in each initial domain, and a density of .05. These constraint
networks are relatively sparse since the variables have five neighbors on aver-
age. For each tightness, 50 instances were generated. Fig. 1 shows mean values
obtained on a Pentium IV-1600 MHz with 512 Mb of memory under Windows
XP.

For a tightness lower than .55, all the values are SAC consistent. On these
under constrained network, the SAC algorithms check the arc consistency of
each subproblem at most once. Storing the SAC-supports to enhance the propa-
gation, as in SAC-2 and in SAC-SDS-2001, does not pay-off on these problems.

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90
1E-2

1E-1

1E0

1E+1

1E+2

1E+3

1E+4

SAC-1-4

SAC-1-6

SAC-1-2001

SAC-Opt-2001

SAC-2-4

SAC-2-6

SAC-2-2001

SAC-SDS-2001

Tightness

cpu time (in sec.)
n=100, d=20, and density=1 (complete constraint networks)

Zoom with a non
logarithmic scale

.38 .39 .40 .41 .42 .43 .44 .45

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

 0

Fig. 2. cpu time results on complete constraint networks with n=100 and d=20.

A brute-force algorithm such as SAC-1 is sufficient. SAC-1-2001 shows the best
performance.

On problems having tighter constraints, some SAC inconsistent values are
removed and at tightness .72 we can see a peak of complexity. However, as men-
tioned in [2], the enhanced propagation of SAC-2 is useless on sparse constraint
networks and SAC-2-X (with X∈ {4, 6, 2001}) is always more expensive than
SAC-1-X on the generated problems.

Around the peak of complexity, SAC-SDS-2001 is the clear winner. SAC-
Opt-2001 and SAC-1-2001 are around 1.7 times slower, and all the others are
between 2.1 and 10 times slower.

5.2 Experiments on dense constraint networks

We used the same computer to evaluate the performance of the SAC algorithms
on complete constraint networks. For each tightness, 50 instances were generated
and Fig. 2 shows mean values.

The performance of SAC-2 and SAC-1 is very close. When all the values are
SAC consistent (tightness lower than .37) the additional data structure of SAC-2

is useless since there is no propagation. However the cost of building this data
structure is not important compared to the overall time and the time required by
SAC-2 is almost the same as SAC-1. Around the peak of complexity, SAC-2-X
(with X∈ {4, 6, 2001}) requires a little less time than SAC-1-X. SAC-2 has to
repeatedly recheck the arc consistency of less subproblems than SAC-1 but the
cost of testing a subproblem remains the same. On very tight constraints, SAC-1
requires less time than SAC-2 since the inconsistency of the problem is found
with almost no propagation and building the data structure of SAC-2 is useless.

Conversely to what is supposed in [1], using AC-4 in SAC-1 (or in SAC-2)
instead of AC-6 or AC-2001 is not worthwhile. The intuition was that since the
data structure of AC-4 has not to be updated, the cost of its creation would be
light compared to the profit we can expect. However, SAC-1-4 and SAC-2-4 are
far more costly than their versions based on AC-6 or AC-2001.

The best results are obtained with SAC-Opt-2001 and SAC-SDS-2001 which
are between 2.6 and 17 times faster than the others at the peak. These two
algorithms have a better propagation between subproblems than SAC-1 but
they also avoid some redundant work and so reduce the work performed on each
subproblem.

6 Summary and Conclusion

We have presented SAC-Opt, a slightly modified version of the optimal worst-
case time complexity SAC algorithm presented in [5]. However, the O(end2)
space complexity of this algorithm prevents its use on large constraint networks.
Therefore, we have proposed another SAC algorithm, SAC-SDS, that is not
optimal in time but that requires less space than SAC-Opt. Like the optimal
algorithm, SAC-SDS tries to avoid redundant work. Experiments show the good
performance of these new SAC algorithms.

References

1. R. Barták. A new algorithm for singleton arc consistency. In Proceedings
FLAIRS’04, Miami Beach, Fl, 2004. AAAI Press.

2. R. Barták and R. Erben. Singleton arc consistency revised. In ITI Series 2003-153,
Prague, 2003.

3. P. Berlandier. Improving domain filtering using restricted path consistency. In
Proceedings IEEE-CAIA’95, Los Angeles, CA, 1995.

4. C. Bessière. Arc-consistency and arc-consistency again. Artificial Intelligence 65,
pages 179–190, 1994.

5. C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency. In
B. Hnich, editor, Proceedings ECAI’04 workshop on Modelling and Solving Prob-
lems with Constraints, Valencia, Spain, 2004.

6. C. Bessière, E.C. Freuder, and J.C. Régin. Using constraint metaknowledge to
reduce arc consistency computation. Artificial Intelligence, 107:125–148, 1999.

7. C. Bessière and J.C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI’01, pages 309–315, Seattle, WA, 2001.

8. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted
path consistency. In Proceedings CP’97, pages 312–326, Linz, Austria, 1997.

9. R. Debruyne and C. Bessière. Some practicable filtering techniques for the con-
straint satisfaction problem. In Proceedings IJCAI’97, pages 412–417, Nagoya,
Japan, 1997.

10. J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Philadelphia PA, 1995.

11. E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11):958–966, 1978.

12. D. Frost, C. Bessière, R. Dechter, and J.C. Régin. Random uniform csp generators.
In http://www.ics.uci.edu/˜ frost/csp/generatotr.html, 1996.

13. O. Lhomme. Consistency techniques for numeric csps. In Proceedings IJCAI’93,
pages 232–238, Chambéry, France, 1993.

14. C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proceedings IJCAI’97, pages 366–371, Nagoya, Japan, 1997.

15. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

16. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225–233, 1986.

17. U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95–132, 1974.

18. P. Prosser. An empirical study of phase transition in binary constraint satisfaction
problems. Artificial Intelligence, 81:81–109, 1996.

19. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceedings
CP’00, pages 353–368, Singapore, 2000.

