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1. INTRODUCTION 
The problem of representing temporal knowledge and tem- 
poral reasoning arises in a wide range of disciplines, including 
computer science, philosophy, psychology, and linguistics. In 
computer science, it is a core problem of information systems, 
program verification, artificial intelligence, and other areas 
involving process modeling. (For a recent survey of work in 
temporal representation, see the special sections in the April 
1982 issues of the ACM SIGART and SIGMOD Newsletters.) 

Information systems, for example, must deal with the p~b-  
lem of outdated data. One approach to this is simply to delete 
outdated data; however, this eliminates the possibility of ac- 
cessing any information except that which involves facts that 
are presently true. In order to consider queries such as, 
"Which employees worked for us last year and made over 
$15,000/' we need to represent temporal information. In some 
applications, such as keeping medical records, the time course 
of events becomes a critical part of the data. 

In artificial intelligence, models of problem solving require 
sophisticated world models that can capture change. In plan- 
ning the activities of a robot, for instance, one must model the 
effects of the robot's actions on the world to ensure that a 
plan will be effective. In natural language processing re- 
searchers are concerned with extracting and capturing tem- 
poral and tense information in sentences. This knowledge is 
necessary to be able to answer queries about the s e n t e n c e s  
later. Further progress in these areas requires more powerful 
representations of temporal knowledge than have previously 
been available. 

This paper addresses the problem from the perspective of 
artificial intelligence. It describes a temporal representation 
that takes the notion of a temporal interval as primitive. It 
then describes a method of representing the relationships be- 
tween temporal intervals in a hierarchical manner using con- 
straint propagation techniques. By using reference intervals, 
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the amount of computation involved when adding a fact can 
be controlled in a predictable manner. This representation is 
designed explicitly to deal with the problem that much of our 
temporal knowledge is relative, and hence cannot be de- 
scribed by a date (or even a "fuzzy" date). 

We start with a survey of current techniques for modeling 
time, and point out various problems that need to be ado 
dressed. After a discussion of the relative merits of interval- 
based systems versus point-based systems in Section 3, a sim- 
ple interval-based deduction technique based on constraint 
propagation is introduced in Section 4. This scheme is then 
augmented in Section 5 with reference intervals, and exam- 
ples in three different domains are presented. In the final 
sections of the paper, extensions to the basic system are pro- 
posed in some detail. These would extend the representation 
to include reasoning about the duration of intervals, reasoning 
about dates when they are available, and reasoning about the 
future given knowledge of what is true at the present. 

The system as described in Section 5 has been imple- 
mented and is being used in a variety of research projects 
which are briefly described in Section 6. Of the extensions, 
the duration reasoner is fully implemented and incorporated 
into the system, whereas the date reasoner has been designed 
but not implemented. 

2. BACKGROUND 
Before we consider some previous approaches to temporal 
representation, let us summarize some important characteris- 
tics that are relevant to our work: 

• The representation should allow significant imprecision. 
Much temporal knowledge is strictly relative (e.g., A is 
before B) and has little relation to absolute dates. 

• The representation should allow uncertainty of informa- 
tion. Often, the exact relationship between two times is 
not known, but some contraints on how they could be 
related are known. 

• The representation should allow one to vary the grain of 
reasoning. For example, when modeling knowledge of 
history, one may only need to consider time in terms of 
days, or even years. When modeling knowledge of com- 
puter design, one may need to consider times on the 
order of nanoseconds or less. 

• The model should support persistence. It should facili- 
tate default reasoning of the type, "If I parked my car in 
lot A this morning, it should still be there now," even 
though proof is not possible (the car may have been 
towed or stolen). 

This does not exhaust all the issues, and others will come 
up as they become relevant. It provides us with a starting 
criteria, however, for examining previous approaches. Pre- 
vious work can be divided roughly into four categories: state 
space approaches, date line systems, before/after chaining, 
and formal models. 

State space approaches (e.g., [7, 17]) provide a crude sense 
of time that is useful in simple problem-solving tasks. A state 
is a description of the world (i.e., a database of facts) at an 
instantaneous point in time. Actions are modeled in such 
systems as functions mapping between states. For example, if 
an action occurs that causes P to become true and causes fact 
Q to be no longer true, its effect is simulated by simply adding 
fact P to the current state and deleting fact Q. If the previous 
states are retained, we have a representation of time as a 
series of databases describing the world in successive states. In 
general, however, it is too expensive to maintain all the pre- 

vious states, so most systems only maintain the present state. 
While this technique is useful in some applications, it does 
not address many of the issues that concern us. Note that 
such systems do provide a notion of persistence, however. 
Once a fact is asserted, it remains true until it is explicitly 
deleted. 

In datebase systems (e.g., [4, 5, 12, 13]), each fact is indexed 
by a date. A date is a representation of a time such that 
the temporal ordering between two dates can be computed by 
fairly simple operations. For example, we could use the inte- 
gers as dates, and then temporal ordering could be computed 
using a simple numeric comparison. Of course, more compli- 
cated schemes based on calendar dates and times are typi- 
cally more useful. Because of the nice computational proper- 
ties, this is the approach of choice if one can assign dates for 
every event. Unfortunately, in the applications we are consid- 
ering, this is not a valid assumption. Many events simply 
cannot be assigned a precise date. There are methods of geno 
eralizing this scheme to include ranges of dates in which the 
event must occur, but even this scheme cannot capture some 
relative temporal information. For instance, the fact that two 
events, A and B, did not happen at the same time cannot be 
represented using fuzzy dates for A and B. Either we must 
decide that A was before B, or B was before A, or we must 
assign date ranges that allow A and B to overlap. This prob- 
lem becomes even more severe if we are dealing with time 
intervals rather than time points. We then need fuzzy date 
ranges for both ends of the interval plus a range for the 
minimum and maximum duration of the interval. 

The next scheme is to represent temporal information us- 
ing before/after chains. This approach allows us to capture 
relative temporal information quite directly. This technique 
has been used successfully in many systems (e.g., [4, 13]). As 
the amount of temporal information grows, however, it suffers 
from either difficult search problems (searching long chains) 
or space problems (if all possible relationships are precom- 
puted). This problem can be alleviated somewhat by using a 
notion of reference intervals [13], which will be discussed in 
detail later. Note that a fact such as "events A and B are 
disjoint" cannot be captured in such systems unless disjunc- 
tions can be represented. The approach discussed in this pa- 
per can be viewed as an extension of this type of approach 
that overcomes many of its difficulties. 

Finally, there is a wide range of work in formal models of 
time. The work in philosophy is excellently summarized in a 
textbook by Rescher and Urrquhart [16]. Notable formal 
models in artificial intelligence include the situation calculus 
[14], which motivates much of the state space based work in 
problem solving, and the more recent work by McDermott 
[15]. In the situation calculus, knowledge is represented as a 
series of situations, each being a description of the world at an 
instantaneous point of time. Actions and events are functions 
from one situation to another. This theory is viable only in 
domains where only one event can occur at a time. Also, 
there is no concept of an event taking time; the transforma- 
tion between the situations cannot be reasoned about or de- 
composed. The situation calculus has the reverse notion of 
persistence: a fact that is true at one instance needs to be 
explicitly reproven to be true at succeeding instants. 

Most of the work in philosophy, and both the situation 
calculus and the work by McDermott, are essentially point- 
based theories. Time intervals can be constructed out of 
points, but points are the foundation of the reasoning system. 
This approach will be challenged in the upcoming section. 

One other formal approach, currently under development, 
that is compatible with an interval-based temporal representa- 
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tion is found in the Naive Physics work of Hayes [10, 11]. He 
proposes the notion of a history, which is a contiguous block 
of space-time upon which reasoning can be organized. By 
viewing each temporal interval as one dimension of a history, 
this work can be seen as describing a reasoning mechanism 
for the temporal component of Naive Physics. 

3. TIME POINTS VS. TIME INTERVALS 
In English, we can refer to times as points or as intervals. 
Thus we can say the sentences: 

We found the letter at twelve noon. 
We found the letter yesterday. 

In the first, "at twelve noon" appears to refer to a precise point 
in time at which the finding event occurred (or was occur- 
ring). In the second, "yesterday" refers to an interval in which 
the finding event occurred. 

Of course, these two examples both refer to a date system 
where we are capable of some temporal precision. In general, 
though, the references to temporal relations in English are 
both implicit and vague. In particular, the majority of tem- 
poral references are implicitly introduced by tense and by the 
description of how events are related to other events. Thus 
we have 

We found the letter while John was away. 
We found the letter after we made the decision. 

These sentences introduce temporal relations between the 
times (intervals) at which the events occurred. In the first 
sentence, the temporal connective "while" indicates that the 
time when the find event occurred is during the time when 
John was away. The tense indicates that John being away 
occurred in the past (i.e., before now). 

Although some events appear to be instantaneous (e.g., one 
might argue that the event "finding the letter" is instanta- 
neous), it also appears that such events could be decomposed 
if we examine them more closely. For example, the "finding 
the letter" might be composed of "looking at spot X where the 
letter was" and "realizing that it was the letter you were 
looking at." Similarly, we might further decompose the "real- 
izing that it was the letter" into a series of inferences that the 
agent made. There seems to be a strong intuition that, given 
an event, we can always "turn up the magnification" and look 
at its structure. This has certainly been the experience so far 
in physics. Since the only times we consider will be times of 
events, it appears that we can always decompose times into 
subparts. Thus the formal notion of a time point, which 
would not be decomposable, is not useful. An informal notion 
of time points as very small intervals, however, can be useful 
and will be discussed later. 

There are examples which provide counterintuitive results 
if we allow zero-width time points. For instance, consider the 
situation where a light is turned on. To describe the world 
changing we need to have an interval of time during which 
the light was off, followed by an interval during which it was 
on. The question arises as to whether these intervals are open 
or closed. If they are open, then there exists a time (point) 
between the two where the light is neither on nor off. Such a 
situation would provide serious semantic difficulties in a tem- 
poral logic. On the other hand, if intervals are closed, then 
there is a time point at which the light is both on and off. 
This presents even more semantic difficulties than the former 
case. One solution to this would be to adopt a convention that 
intervals are closed in their lower end and open on their 
upper end. The intervals could then meet as required, but 
each interval would have only one endpoint. The artificiality 

of this solution merely emphasizes that a model of time based 
on points on the real line does not correspond to our intuitive 
notion of time. As a consequence, we shall develop a repre- 
sentation that takes temporal intervals as primitive. 

If we allowed time points, intervals could be represented by 
modeling their endpoints (e.g., [4]) as follows: Assuming a 
model consisting of a fully ordered set of points of time, an 
interval is an ordered pair of points with the first point less 
than the second. We then can define the relations in Figure 1 
between intervals, assuming for any interval t, the lesser end- 
point is denoted by t -  and the greater by t+. 

We could implement intervals with this approach, even 
given the above argument about time points, as long as we 
assume for an interval t that t -  < t+, and each assertion 
made is in a form corresponding to one of the interval rela- 
tions. There are reasons why this is still inconvenient, how- 
ever. In particular, the representation is too uniform and does 
not facilitate structuring the knowledge in a way which is 
convenient for typical temporal reasoning tasks. To see this, 
consider the importance of the during relation. Temporal 
knowledge is often of the form 

event E' occurred during event E. 

A key fact used in testing whether some condition P holds 
during an interval t is that if t is during an interval T, and P 
holds during T, then P holds during t. Thus during relation- 
ships can be used to define a hierarchy of intervals in which 
propositions can be "inherited." 

Furthermore, such a during hierarchy allows reasoning 
processes to be localized so that irrelevant facts are never 
considered. For instance, if one is concerned with what is true 
"today," one need consider only those intervals that are dur- 
•ng "today," or above "today" in the during hierarchy. If a fact 
is indexed by an interval wholly contained by an interval 
representing "yesterday," then it cannot affect what is true 
now. It is not clear how to take advantage of these properties 
using the point-based representation above. 

4. MAINTAINING TEMPORAL RELATIONS 
4.1. The Basic Algorithm 
The inference technique described in this section is an at- 
tempt to characterize the inferences about time that appear to 
be made automatically or effortlessly during a dialogue, story 
comprehension, or simple problem-solving. Thus it should 
provide us with enough temporal reasoning to participate in 
these tasks. It does not, however, need to be able to account 
for arbitrarily complex chains of reasoning that could be 
done, say, when solving a puzzle involving time. 

We saw above five relations that can hold between inter- 
vals. Further subdividing the during relation, however, pro- 

Interval Relation Equivalent Relations on Endpoints 

t<s t+ < s-  

t = s  (t-  = s - )  & ( t +  : s + )  

toverlapss (t- < s-) & (t+ > s-) & (t+ < s+) 

t meets s t+ = s- 

t durings ((t- > s-) & (t+ = ( s+ ) )  or 
((t- >= s-) & (t+ < s+)) 

FIGURE 1. Interval Relation Defined by Endpoints. 
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vides a better computational model? Considering the inverses 
of these relations, there are a total of thirteen ways in which 
an ordered pair of intervals can be related. These are shown 
in Figure 2. 

Sometimes it is convenient to collapse the three during 
relations (d, s, f) into one relationship called dur, and the 
three containment relations (di, si, fi) into one relationship 
called con. After a quick inspection, it is easy to see that these 
thirteen relationships can be used to express any relationship 
that can hold between two intervals. 

The relationships between intervals are maintained in a 
network where the nodes represent individual intervals. Each 
arc is labeled to indicate the possible relationship between the 
two intervals represented by its nodes. In cases where there is 
uncertainty about the relationship, all possible cases are en- 
tered on the arc. Note that since the thirteen possible relation- 
ships are mutually exclusive, there is no ambiguity in this 
notation. Figure 3 contains some examples of the notation. 
Throughout, let Ni be the node representing interval i. Notice 
that the third set of conditions describes disjoint intervals. 

Throughout this paper, both the above notations will be 
used for the sake of readability. In general, if the arc asserts 
more than one possible relationship, the network form will be 
used, and in the case where only one relationship is possible, 
the relation form will be used. 

For the present, we shall assume that the network always 
maintains complete information about how its intervals could 
be related. When a new interval relation is entered, all conse- 
quences are computed. This is done by computing the transi- 
tive closure of the temporal relations as follows: the new fact 
adds a constraint about how its two intervals could be related, 
which may in turn introduce new constraints between other 
intervals through the transitivity rules governing the temporal 
relationships. For instance, if the fact that i is during j is 
added, and j is before k, then it is inferred that i must be 
before k. This new fact is then added to the network in an 
identical fashion, possibly introducing further constraints on 
the relationship between other intervals. The transitivity rela- 
tions are summarized in Figure 4. 

The precise algorithm is as follows: assume for any tem- 
peral relation names r l  and r2 that T(rl, r2) is the entry in 
the transitivity table in Figure 4. Let R1 and R2 be arc labels, 
assume the usual set operations (N for intersection, U for 
union, C for proper subset), and let e be the empty set. Then 
constraints (R 1, R2) is the transitivity function for lists of rela- 
tion names (i.e., arc labels), and is defined by: 

Constraints (R1, R2 ) 
C~--e; 
For each rl  in R1 

For each r2 in R2 
C ~ C U T(rl, r2); 

Return C; 

Assume we have a queue data structure named ToDo with 
the appropriate queue operations defined. For any two inter- 
vals i, j, let N(i, j) be the relations on the arc between i and j 
in the network, and let R(i, j) be the new relation between i 
and j to be added to the network. Then we have the follow- 
ing algorithm for updating the temporal network: 

To Add R(i, I') 
Add (i, j) to queue ToDo; 
While ToDo is not empty do 

1 This fact was pointed out to me by Marc  Vilain and was first util ized in his 
sys tem [18]. 

Relation Symbol Symbol for 
Inverse 

X before Y < > 

X equal Y = = 

X meets Y m mi 

X overlaps Y o oi 

X during Y d di 

X starts Y s si 

X finishes Y f fi 

Pictoral 
Example 

XXX YYY 

XXX 
YYY 

XXXYYY 

XXX 
YYY 

XXX 
YYYYYY 

XXX 
YYYYY 

XXX 
YYYYY 

FIGURE 2. The Thirteen Possible Relationships. 

Relation Network Representation 

1. i duringj N i --(d)~ Nj 

2. i during j or N i --(< d di)--, Nj 
i before j or 
j during i 

3. ( i < j )  o r ( i > j ) o r  N i --(< > m mi)--, Nj 
i meets j or 
j meets 1 

FIGURE 3. Representing Knowledge of Temporal Relations 
in a Network. 

b e g i n  

Get next (i, j) from queue ToDo; 
N(i, i) ~ R(i, 1); 
For each node k such that Comparable(k, j) do 
begin 

R(k, j) ~-- N(k, l] N Constraints(N(k, i), R(i, j)) 
If R(k, i) C N(k, i) 

then add (k, i) to ToDo; 
end 
For each node k such that Comparable(i, k) do 
begin 

R(i, k) ~-- N(i, k) N Constraints(R(/, j), N( j, k)) 
If R(i, k) C N(k, i) 

then add (i, k) to ToDo; 
end 

end; 

We have used the predicate Comparable(i, j) above, which 
will be defined in Section 5. For the present, we can assume 
it always returns true for any pair of nodes. 

4.2. An Example 
Consider a simple example of this algorithm in operation. 
Assume we are given the facts: 

S overlaps or meets  L 

S is before, meets,  is met  by, or after R. 
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B r2 C < > d di o oi m mi s si f fi 
A r l  B 

"be fo re "  
< 

< 

"a f ter "  no 
> info 

"during" 
d 

no < o  < < < o  < < o  < 
info m d m d m d 

S S S 

> > oi 
mi d 

f 

< > d 

"contains" < o > oi o oi 
di m di di mi dur 

fi si con 

< "ove r l aps "  
0 

" o v e r -  < o 
l apped -by "  m di 
oi fi 

< "meets"  
m 

"me t -by "  < o 
mi m di 

fi 

< "starts" 
S 

"s tar ted by"  < o 
si m di 

fi 

< " f in ishes"  
f 

" f in ished - by"  
fi 

< 

> > oi > > oi > > oi > 
m i d  mi d m i d  

f f f 

no < o > oi < > d > oi 
info m d mi d m i d  

s f f 

di o di oi di o di oi di di fi di 
fi si fi si o 

> oi o < o < o oi < oi 
di mi d m di o dur di 

si s fi m con si 

di 
fi 
0 

> oi > oi o oi > o > oi oi 
d mi di dur oi di d > 
f si con mi fi f mi 

I = 

> oi o < < o < f 
mi di d d fi 

si s s = 

m 

> oi > oi > s > d 
d d si f 
f f = oi 

< 

> d < o < o oi < mi s 
m d i  m d f  

fi 

> oi di o oi o mi s si 
d f di fi di fi = 

> d > oi o > oi m > d 
mi di d mi 

si s 

> oi o di o oi m si oi 
mi di d di si di 

si s 

m 

> 

s si 

si 

> oi 
mi 

di 

< 0  

m d  
S 

> 

d 

di si 
oi 

d 
S 

0 

oi 

mi 

oi 

f fi 

< 

> 

< 0  
m d  

S 

di 

< 

0 
m 

oi 
di 
si 

< 

mi 

< m  

0 

di 

f fi 

FIGURE 4. The Transitivity Table for the Twelve Temporal Relations (omittin 9 "="). 
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These facts might be derived from a story such as the follow- 
ing: 

John was not in the room when I touched the switch to 
turn on the light. 

where we let S be the time of touching the switch, L be the 
time the light was on, and R be the time that John was in the 
room. The network storing this information is 

R ~---(< mmi  >) - -  S - -(om)----~ L. 

When the second fact is added, the algorithm computes a 
constraint between L and R (via S) by calling the function 
Constraints with its two arguments, R1 and R2, set to {oimi} 
and {(mmi)I, respectively. Note that we obtained the inverse 
of the arc from S to L simply by taking the inverse of each 
label. Constraints uses the transitivity table for each pair of 
labels and returns the union of all the answers. Since 

T(oi, <) = (< omdifi)  

T(oi, m) = (odifi) 

T(oi, mi) = (>) 

r(oi,  >) = (>) 

T(mi, <) = (< omdifi)  

T(mi, m) = (ssi =) 

T(mi, mi) = (>) 

T(mi, >) = (>) 

we compute (< > omdi s sift =) as the constraint between L 
and R and thus obtain the network 

R ~--(< mmi  >)- - S - -(om)--~ L 

1' I 
- - -(< > ooimdi  s sift =) . . . . .  

Let us consider what happens now when we add the fact 

L overlaps, starts, or is during R 

This fact might arise from a continuation of the above story 
such as 

But John was in the room later while the light went out 

Taking the intersection of this constraint with the previously 
known constraint between L and R to eliminate any impossi- 
ble relationships gives 

L - -(os)---~ R 

To add this constraint, we need to propagate its effects 
through the network. A new constraint between S and R can 
be calculated using the path: 

S - -(om)--~ L - -(os)--~ R 

From the transitivity tables, we find: 

T(o,o) = ( < o m )  

T(o, s) = (o) 

T(m, o) = (<) 

T(m, s) = (m) 

Thus the inferred constraint between S and R is 

S - -(< om)--~ R. 

Intersecting this with our previous constraint between S and 
R yields 

S - -(< m)---~ R. 

With respect to the example story, this is equivalent to infer- 
ring that John entered the room (i.e., R started) either after I 
touched the switch or at the same time that I finished touch- 
ing the switch. Thus the new network is: 

R <--(< m)-- S --(om)--~ L 

' t  I 

. . . . . . . . . .  (o s) . . . . . . . .  

Of couse, if there were other nodes in the network, there 
would be other constraints derived from this new informa- 
tion. Thus, if we added a new interval D, say with the con- 
straint D - -(d)--~ S, we would infer the following new rela- 
tionships as well: 

D - -(<)--~ R 

D - -(< o m d s)---~ L. 

4.3 .  A n a l y s i s  
A nice property of this algorithm is that it only continues to 
operate as long as it is producing new further constrained 
relationships between intervals. Since there are at most thir- 
teen possible relationships that could hold between two inter- 
vals, there are at most thirteen steps that could modify this 
relationship. Thus for a fixed number of nodes N, the upper 
limit on the number of modifications that can be made, irre- 
spective of how many constraints are added to the network, is 
13 × the number of binary relations between N nodes, which 
is: 

( N -  1 ) ( N -  2) 
1 3 x  

2 

Thus, in practice, if we add approximately the same number 
of constraints as we have nodes, the average amount of work 
for each addition is essentially linear (i.e., N additions take 
O(N 2) time; one addition on average takes O(N) time). 

The major problem with this algorithm is the space re- 
quirement. It requires O(N 2) space for N temporal intervals. 
Methods for controlling the propagation, saving time and 
space, will be discussed in the next section. 

It should be noted that this algorithm, while it does not 
generate inconsistencies, does not detect all inconsistencies in 
its input. In fact, it only guarantees consistency between three 
node subnetworks. There are networks that can be added 
which appear consistent by viewing any three nodes, but for 
which there is no consistent overall labeling. The network 
shown in Figure 5 is consistent if we consider any three 
nodes; however, there is no overall labeling of the network. 2 
To see this, if we assign the relationship between A and C, 
which could be f or fi according to this network, to either f 
alone, or fi alone, we would arrive at an inconsistency. In 
other words, there is no consistent labeling with A - -( f)--~ C, 
or with A - -( fi)--~ C, even though the algorithm accepts A 
- -( f f i ) ~  C. 

To ensure total consistency, one would have to consider 
constraints between three arcs, between four arcs, etc. While 
this can be done using techniques outlined in Freuder [9], the 
computational complexity of the algorithm is exponential. In 
practice, we have not encountered problems from this defi- 
ciency in our applications of the model. We can verify the 
consistency of any subnetwork, if desired, by a simple back- 
tracking search through the alternative arc labelings until we 

2 This network is due to Henry Kautz, personal communication. 
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FIGURE 5. An Inconsistent Labeling. 

arrive at a labeling for the whole subnetwork in which every 
arc has only one label. 

5. CONTROI.I.ING PROPAGATION: REFERENCE 
INTERVALS 
In order to reduce the space requirements of the representa- 
tion without greatly affecting the inferential power of the 
mechanism, we introduce reference intervals. Formally, a ref- 
erence interval is simply another interval in the system, but it 
is endowed with a special property that affects the computa- 
tion. Reference intervals are used to group together clusters of 
intervals for which the temporal constraints between each 
pair of intervals in the cluster is fully computed. Such a 
cluster is related to the rest of the intervals in the system only 
indirectly via the reference interval. 

5.1. Using Reference Intervals 
Every interval may designate one or more reference intervals 
(i.e., node clusters to which it belongs). These will be listed in 
parentheses after the interval name. Thus the node names 

II(R1) 

I2(R1, R2) 

describe an interval named I1 that has a reference interval 
R1, and an interval named I2 that has two reference intervals 
R1 and R2. Since I2 has two reference intervals, it will be 
fully connected to two clusters. An illustration of the connect- 
edness of such a network is formed in Figure 6. 

The algorithm to add relations using reference intervals is 
identical to the previous addition algorithm except that the 
comparability condition is no longer universally true. For any 
node N, let Refs(N) return the set of reference intervals for N. 
For any two nodes K and J, Comparable(K, J) is true if 

1) Refs(K) A Refs(J) is not null, that is, they share a reference 
interval; or 

2) K c Refs(J); or 
3) J c Refs(K). 

Since reference intervals are simply intervals themselves, 
they may in turn have their own reference intervals, possibly 
defining a hierarchy of clusters. In most of the useful applica- 
tions that we have seen, these hierarchies are typically tree- 
like, as depicted in Figure 7. 

If two intervals are not explicitly related in the network, a 
relationship can be retrieved by finding a path between them 
through the reference intervals by searching up the reference 
hierarchy until a path (or all paths) between the two nodes 
are found. Then, by simply applying the transitivity relation- 
ships along the path, a relationship between the two nodes 
can be inferred. If one is careful about structuring the refer- 
ence hierarchy, this can be done with little loss of information 
from the original complete propagation scheme. 

To find a relationship between two nodes I and ], where 
N(i, j) represents the network relation between nodes i and j 
as in Section 4.1, we use the algorithm: 

If N(I, J) exists 
then return N(I, J) 
else do 

Paths := Find-Paths(I, J) 
For each path in Paths do 

R := R CI Constrain-along-path(path) 
return R; 

end; 

The function Find-Paths does a straightforward graph 
search for a path between the two nodes with the restriction 
that each step of the path must be between a node and one of 
its reference intervals except for the one case where a direct 
connection is found. Thus, a path is of the general form 

n l ,  n 2 ,  . . . , n k ,  n k + l ,  • • • , n m  

where all of the following hold: 

- - for all i from I to k - 1, ni+l is a reference interval for ni; 
- -  nk and nk+l are connected explicitly; 
- - for all i from k + 1 to m - 1, ni is a reference interval for 

n~+l; 

! 1 (RI) 17(R2) 

/ I \ / 1 \  4 :R14,,. /I21R 'R21   6(R2) 
I3(R1) I5(R2) 

FIGURE 6. The Connectness of a Network with 
Two Reference Intervals. 

R2(R1) 

R3(R2) ~ R4(R2) 

/ \  
1 1(R3) 12(R3) 14(R4)-I 5(R4) 

R1 

R5(R1) 

/ \  
Z , 

FIGURE 7. A Tree-Like Hierarchy Based on Reference Intervals. 

838 Communications of the ACM November 1983 Volume 26 Number 11 



RESEARCH CONTRIBUTIONS 

LIFE 

< d 

PRESCHOOL(LIFE) ~ PREGRAD(LIFE) ~POSTGRAD(LIFE) 

d POSTGRAOI 

PRIM(PREGRAD) ~ SECOND(PREGRAD) ~ UNIV(PREGRAD) 

CHESS(PRIM) WlN(UNIV) 

FIGURE 8. A Typical Reference Hierarchy 
for a History of a Person. 

The function Constrain-along-path simply takes a path and 
computes the transitivity constraints along it. Thus if a path 
consisted of the nodes nl, n2, n3 . . . . .  nm, we compute the 
relation between nl and nm as follows: 

R := N(nl, n2) 

R := Constraints(R, N(nz, n3)) 

R := Constraints(R, N(n3, n4)) 

R := Constraints(R, N(nm-~, nm)) 

where Constraints was defined in Section 4.1. 

5.2. Examples 
There are no restrictions imposed by the system on the use of 
reference intervals. Their organization is left up to the system 
designer. Certain principles of organization, however, are par- 
ticularly useful in designing systems that remain efficient in 
retrieval, and yet capture the required knowledge. The most 
obvious of these is a consequence of the path search algo- 
rithm in the previous section: the more tree-like the reference 
hierarchy, the more efficient the retrieval process. The others 
considered in this section exploit characteristics of the tem- 
poral knowledge being stored. 

With domains that capture historical information, it is best 
to choose the reference intervals to correspond to key events 
that naturally divide the facts in the domain. Thus, if model- 
ing facts about the history of a particular person, key events 
might be their birth, their first going to school, their gradua- 
tion from university, etc. Kahn and Gorry [13] introduced 
such a notion of reference events in their system. Other times 
in their system were explicitly related to these reference 
events (i.e., points). In our system, the intervals between such 
key events would become the reference intervals. Other time 
intervals would be stored in the cluster(s) identified by the 
reference intervals that contain them. Thus, we could have a 
series of reference intervals for the time from birth to starting 
school (PRESCHOOL), during school (PREGRAD), and after 
graduation (POSTGRAD). In addition, certain reference inter- 
vals could be further decomposed. For example, PREGRAD 
could be divided into primary and secondary school (PRIM 
and SECOND) and the time at university (UNIV). The times 
of the rest of the events would be stored with respect to this 
reference hierarchy. Figure 8 depicts this set of facts including 
its reference hierarchy, plus intervals such as the time spent 

learning chess (CHESS), the time the person won the state 
lottery (WIN), and the time of the first job (JOB). If an event 
extended over two reference intervals, then it would be 
stored with respect to both. For example, if learning to play 
chess occurred during primary and secondary school, the in- 
terval CHESS would have two reference intervals, namely, 
PRIM and SECOND. 

We can now trace the retrieval algorithm for this set of 
facts. Let us find the relationship between CHESS and WIN. 
There is no explicit relationship between the intervals, so we 
must search up the reference hierarchy. Only one path is 
found, namely: 

CHESS(PRIM)- -(d)---~ PRIM(PREGRAD) - -(<)-. 

UNIV(PREGRAD) - -(di)--~ WIN(UNIV) 

Applying the transitivity relations along the first path, we 
infer first that 

CHESS before UNIV 

and then 

CHESS before WIN. 

The fact that CHESS is before JOB can be inferred similarly 
from the path 

CHESS- -(d)--> PRIM - -(s)--, PREGRAD - -(m)--~ 

POSTGRAD - -(di)--> JOB. 

Consider another domain, namely, that of representing in- 
formation about processes or actions. Such knowledge is re- 
quired for problem-solving systems that are used to guide the 
activity of a robot. Each process can be described as a partial 
sequence of subprocesses. Such a decomposition is not de- 
scribed in absolute temporal terms (i.e., using dates), but by 
the subprocess's relation to its containing process. Thus a 
natural reference hierarchy can be constructed mirroring the 
process hierarchy. For example, consider a process P consist- 
ing of a sequence of steps P1, P2, and P3 and another process 
Q consisting of subprocesses Q1 and Q2 occurring in any 
order, but not at the same time. Furthermore, let Q2 be 
decomposed into two subprocesses Q21 and Q22, each occur- 
ring simultaneously. To simulate a world in which process P 
begins before Q begins, we can construct the reference hier- 
archy in Figure 9. With this organization we can infer rela- 
tionships between subprocesses of Q and subprocesses of P in 
the same manner as above. As long as the decomposition of 
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(<m o) 
Q(x) ~ P(x) 

Q1 (Q) > Q2(Q) P1 (p).i.-p2(p)~ P3(P) 

e 
Q21 (Q2) ~ 12122(1212) 

FIGURE 9. A Reference Hierarchy Mirror- 
ing a Process Hierarchy. 

processes or actions can be done independently (such as in 
the NOAH system [17]), this organization will capture all the 
relevant temporal knowledge. 

More interesting cases arise when there may be interac- 
tions among subprocesses. For instance, we might want to add 
that Q1 must occur before Q21. Note that, in adding Q1 
before Q21, we can infer a new relationship between Q1 and 
Q2 from the path 

QI(Q) - -(<)--~ Q21(Q2) - -(e)--~ Q2(Q) 

because Q1 and Q2 share the reference interval Q. It does not 
matter that Q21 does not share a reference interval with Q1. 
In more complicated cases, we will find relationships between 
subprocesses such that an important relationship between the 
processes containing the subprocesses will not be inferred 
because they do not share a reference interval. For instance, if 
we learn that Q2 overlaps P1, adding this will not cause the 
relationship between Q and P to be constrained to simply the 
overlaps relation even though that would be a consequence in 
the system without reference intervals. There is no path con- 
sisting of two arcs from Q to P that is affected by adding Q2 
overlaps P1. 

To allow this inference, we need to reorganize the refer- 
ence hierarchy. For example, we could, when adding a rela- 
tion between two noncompatible nodes, expand one of the 
node's reference intervals with the other node's reference 
intervals. In this scheme, to add Q2 ovedaps P1, we would 
first add P to Q2's reference interval list. Then adding the 
relation will allow the appropriate changes. In particular, 
among others, we would infer that 

Q2(Q, P) - -(o)--~ P(X) 

from the path 

Q2(Q, P) - -(o)-+ PI(P) - -(s)-+ P(X), 

and then infer 

Q(X) - -(o)--~ P(X) 

from the path 

Q(X) - -(di)-+ Q2(Q, P) - -(o)--, P(X) 

and the previous constraints between Q and P. The final state 
of the processes after these two additions is summarized in 
Figure 10. 

Manipulating the reference hierarchies as in this example 
can be effective if used sparingly. With overuse, such tricks 
tend to "flatten out" the reference hierarchy as more intervals 
become explicitly related. In domains where such interactions 
are rare compared with the pure decompositional interac- 
tions, it can be very effective. 

5.3. Representing the Present Moment 
The technique of reference interval hierarchies provides a 
simple solution to the problem of representing the present 
moment. In many applications, such as natural language proc- 
essing and process modeling, the present is constantly moving 
into the future. Thus a representation of NOW must allow for 
frequent updating without involving large-scale reorganization 
of the database each time. 

Suppose we have a database in which all assertions are 
indexed by the temporal interval over which they hold. As 
time passes, we are interested in monitoring what is true at 
the present time, as well as in the past and future. The 
method suggested here is to represent NOW as a variable that, 
at any specific time, is bound to an interval in the database. 
To update NOW, we simply reassign the variable to a new 
interval that is after the previous interval representing the 
present moment. The key observation is that while the pre- 
sent is continually changing, most of the world description is 
remaining the same. We can exploit this fact by using refer- 

FIGURE 10. The Process Knowledge 
After Two Updates. 

o 
Q(x) ~ P(x) 

d d o s d < f 

Q1 (Q) - . .~  Q2 (QP) - - i , -  P1 (P) --~,.- P2 (P) > P3(P) 

t 

Q21 (Q2) ~ Q22(A2) 
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ence intervals to control the inferences resulting from updat- 
ing NOW. 

For example, let NOW be interval N1, which is during its 
reference interval R1. An example state of the database 
would be 

NI(R1) during R1 

R1 before I1, R1 after I2, R1 during I3 

From this we can infer easily that the present (i.e., N1) is 
during 13, before I1, and after 12. If NOW then is updated 
(slightly), N2 can be defined as the new NOW using the same 
reference interval by adding the facts 

N2(R1) during R1, N2(R1) after NI(R1) 

Thus, NOW has been updated but most of the relations in the 
database have been unaffected, for the effects of N2 will only 
propagate to intervals referenced by R1. The reference inter- 
val R1 has "protected" the rest of the database from a minor 
change in the present moment. 

Of course, eventually NOW will cease to be during R1 and 
a new reference interval will be needed. This will involve a 
more major update to the database, but the amount of work 
can be reduced if R1 itself has a reference interval that "pro- 
tects" much of the database from it. 

Thus we need a hierarchy of reference intervals, each con- 
taining the present moment. This hierarchy could be designed 
to mirror the set of English terms that can be used to refer to 
the present. For example, in English we can refer to the exact 
moment of an utterance (e.g., at a race, the starter may say 
"Go now!"), as well as to larger intervals such as "this morn- 
ing," "today," and "this year." We can also refer to more 
event-oriented intervals such as "during this lecture" and 
"while at this bar." These are the types of intervals that 
should be maintained in the hierarchy representing the pre- 
sent. Furthermore, these intervals typically have well defined 
starting and termination points. Thus it is reasonable to as- 
sume that the temporal database will receive explicit notifica- 
tion when one of them ceases to contain the present. This 
allows the following important assumption: 

When updating the NOW interval, unless otherwise stated, 
its relationship to its reference interval(s) remains constant. 

When one of the reference intervals in the hierarchy ceases 
to contain the present moment, a new reference interval is 
selected. (This new interval should usually be provided by 
the user.) This update is done in the identical fashion as 
described above with NOW. In particular, the relationship 
with the higher-level reference interval remains constant. A 
new NOW interval, below the new reference interval in the 
hierarchy, must be introduced. For example, the beginning of 
a new day would make much of the old hierarchy part of the 
past (i.e., "yesterday"). 

While many intervals will be generated by this succession 
of intervals for NOW, many of them can be garbage collected 
when the reference intervals are updated. In particular, any 
interval that is not used to index any events or facts may be 
removed from the database. In a system modeling a natural 
language dialogue, a large number of these intervals would be 
used only to index the time of an utterance: These generally 
can be deleted without harm. 

6. DISCUSSION 
The temporal representation described is notable in that it is 
both expressive and computationally feasible. In particular, it 
does not insist that all events occur in a known fixed order, as 

in the state space approach, and its allows disjunctive knowl- 
edge, such as that event A occurred either before or after 
event B, not expressible in date-based systems or simple sys- 
tems based on before/after chaining. It is not as expressive as 
a full temporal logic (such as that of McDermott [15]), but 
these systems do not currently have viable implementations. 

This balance between expressive power and computational 
efficiency is achieved by the restricted form of disjunctions 
allowed in the system. One can only assert disjunctive infor- 
mation about the relationship of two intervals. In other words, 
we can assert that A is before or meets B, but not that (A 
meets B) or (C before D). This limited form of disjunction is 
ideal for the constraint propagation algorithm. 

The system has been implemented and is being used in a 
variety of applications. Both FRANZ LISP [8] and INTERLISP 
versions are running on a VAX 11/780 under UNIX. The 
system presently also includes the duration reasoner de- 
scribed below. It is currently being used in research in repre- 
senting actions, events, and interactions that arise in natural 
language dialogues [1]. We are also using the representation as 
a world model for research in automatic problem-solving sys- 
tems [3]. Such systems have long been constrained by their 
inadequate temporal models. 

Vilain [18] has implemented a version of this system 
which, at the cost of greater space requirements, can perform 
consistency maintenance. In other words, in his system, when 
an inconsistency is found, the set of facts that caused the 
inconsistency can be identified. This system also explicitly 
allows time points in the representation and has a larger 
transitivity table, including all interval/point and point/point 
interactions. This violates the semantics of the interval repre- 
sentation, and so has not been adopted in our present system. 

Let us consider why we would like time points, however. 
They seem to be referred to in English. We can, for instance, 
talk about the beginning and ending of events. There is no 
reason to assume, however, that these "endpoints" are truly 
zero-width points rather than intervals small enough so that 
they appear to be instantaneous. What this suggests is that 
there might be a minimum duration e, such that all intervals 
of duration less than e would be viewed as points. This would 
simplify our reasoning about such times for we would not 
have to worry about the possibility of two such intervals 
overlapping. It would be assumed either that these small in- 
tervals are equal or that one is before the other. 

But this minimum size cannot be fixed in advance. A histo- 
rian, for instance, may be happy to consider days as points, 
whereas the computer engineer, when reasoning about a logic 
circuit, would consider a day to be an eternity. Thus the 
interval size, where it is appropriate to simplify reasoning by 
assuming point-like times, varies with the reasoning task. 

7. FUTURE RESEARCH AND EXTENSIONS 
There are many areas in which this system is being extended. 
In particular, an interface to a duration reasoner has been 
incorporated into the system, and a system for reasoning 
about dates will be implemented in the near future. Finally, 
we are investigating reasoning systems that depend on the 
notion of persistence. 

7.1. Duration Reasoning 
We have designed a duration reasoning system based on the 
same principles as the interval relation reasoner described 
above. In particular, it is designed to allow relative informa- 
tion (e.g., interval A took longer than interval B) as well as 
representing uncertainty. The reasoner is again based on con- 
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straint propagation and a notion of reference durations can be 
defined. 

Very briefly, the duration relationship between two inter- 
vals is expressed by outlining a range that includes the multi- 
plicative factor which the duration of the first would be mul- 
tiplied by to get the duration of the second. For example, the 
fact that the duration of A is less than the duration of B, 
expressed as dur(A) < dur(B), is represented by the relation 
A - -(0(1))--) B. In other words, dur(A) > =  0*dur(B) and 
dur(A) < l*dur(B). The parentheses about the factor I indi- 
cate an open endpoint; thus the durations of A and B could 
not be equal. Both the upper and lower duration limits may 
be open or closed. 

Duration information is encoded in a network orthogonal to 
the relationship network. Propagation across two duration re- 
strictions is accomplished simply by multiplying the respec- 
tive upper and lower duration limits. For example, if we have 
the facts 

dur(A) < =  dur(B) 

dur(C) < =  dur(B) 

dur(B) < 2*dur(C) 

which in network form would be 

A --(01)--~ B --(1(2))--) C 

we derive the relation 

A - -(0(2))--~ C. 

The duration reasoner and the interval reasoner are not 
independent of each other, however. They constrain each 
other by rules such as the following: 

If I --(dsf)--~ J then  dur(I) < dur(J). 

Using this rule, constraints introduced in one network may 
introduce constraints in the other. In many examples, the 
networks may exchange information back and forth multiple 
times before the propagation terminates. 

Reference durations correspond to the notion of scales, or 
common units. Constraints do not propagate through a refer- 
ence duration. Thus, if the duration HOUR is a reference 
duration, and we add that dur(A) is between 1 and 2 hours, 
and dur(B) is less than one half an hour, no relation between 
dur(A) and dur(B) will be inferred. It will be derived at re- 
trieval time via the reference duration HOUR. Further details 
on the duration reasoner can be found in [2]. 

7.2. Date Lines 
Having considered the maintenance of relative temporal in_for- 
mation in detail, we now consider how to exploit date infor- 
mation when available. Let a date line be any representation 
consisting of a fully ordered set of values taken to correspond 
to times. A date line corresponding to a simple calendar could 
be defined as follows: 

values: ordered triples of integers, representing year, month 
(1-12), and day (1-31) (for example, (50 3 25) represents 
March 25, 1950) 

comparison operation: orders triples in the obvious manner 
(for example, (50 3 25) < (75 1 1)) 

With date lines, the comparison operation between two times 
on the same date line is relatively inexpensive compared to 
searching the network of temporal relations. 

Date line information could be incorporated into the pre- 
sent system by allowing any interval in the network to have 
date line information associated with it which identifies the 
dating system and dates associated with its start and end. The 

name of the date line is necessary to identify the operations 
for comparing values. A new interval, added with date line 
information specified, may affect the relationship to its refer- 
ence interval and to the other intervals in its "reference 
class." For example, if two intervals are dated by the same 
date line, and have date values specified, those values can be 
used to calculate the exact relation between the intervals. If 
this relation is more specific than the information stored in 
the relational network, the network is updated and its effects 
propagated as usual. 

When retrieving a relationship between two intervals dated 
by the same date line, the date information should be consid- 
ered first before applying the usual network retrieval mecha- 
nism. Sometimes, however, the date line information will not 
be specific enough to pinpoint a specific relationship, and a 
network search will still be necessary. It may occur that one 
of the intervals being considered is dated but the other is not. 
In this case, the date information may be used only if a 
relationship can be found between the nondated interval and 
another interval dated by the same date line. In general, this 
may be too expensive to consider. A specific case that could 
be very useful, however, occurs when a reference interval 
involved in the search is dated by the appropriate date line. 
We can then compare the two dated intervals to obtain a 
relationship, which can be propagated back to the nondated 
interval. 

A useful date line for dialogue systems is the time-of-day 
line. A reasonable implementation of this might have the 
basic duration of one minute, and have values consisting of 
an hour-minute pair. If the system were given access to a 
clock, this date line could be used extensively in the N O W  
hierarchy. Of course, the relative time database is still r e - ,  
quired to store the facts that are acquired during the dialogue 
as facts typically hold for much longer than the time that they 
are being talked about. 

If the system does not have such easy access to an internal 
clock, it may still get time-of-day information occasionally 
during a dialogue. In this case, some of the NOW intervals 
will map onto the time-of-day line, while others will only be 
related to it by some relation (e.g., after 10 o'clock). In such a 
scheme, a new reference interval for the NOW interval would 
be created each time a precise time-of-day value was identi- 
fied. For example, if the system learns that it is presently 10 
o'clock, it can create an "after 10 o'clock" reference interval in 
which the NOW intervals will be contained until the next 
specific time is acquired. Whether such a technique is feasible 
requires further search. 

7.3. Persistence of  Intervals 
The last requirement described in the introduction was that 
the representation should facilitate plausible inferences of the 
form "if fact P is true now, it will remain true until noticed 
otherwise." Most of the issues concerning this fall outside the 
range of this paper, as this system only knows about time 
intervals. However, a simple trick using this representation 
makes inferences of the above form easy to implement. 

Typically, when a new fact is learned, its exact extent in 
time is not known. For instance, when I parked by car in the 
parking lot this morning I knew its location. Sitting at my 
desk now, I assume it is still there, though I have no proof of 
that fact. In general, I assume it will remain where it is until I 
pick it up. Thus, although I do not know the extent of the 
interval in which my car is parked, I want to be able to 
assume that this fact holds later in the day. The temporal 
representation is already based on the observation that most 
time intervals do not have precisely defined limits. If we 
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allow the user to specify that some intervals should be as- 
sumed to extend as far as possible given the constraints, then 
we can use such intervals to index facts that are assumed to 
persist until discovered otherwise. 

Thus, if we let a fact P be indexed by a persistent interval 
Tp, then testing P later during an interval t will succeed (by 
assumption) if it is possible that t is during Tp. Checking 
whether  relationships be tween intervals are possible is easy, 
since the representation explicitly maintains this information. 

For example, let Tp represent the interval in which my car 
is in the parking lot. I know that Tp is met by Tarrive, where  
Tarrive is the t ime that I arrived at school today. Then, if 
N O W  is represented as interval Tnow, where  Tnow after 
Tarrive, we can test if my car is on the parking lot. Since it is 
there during Tp, we are interested in whether  it is possible 
that Tnow is during Tp. The known constraints allow us to 
infer the following: 

Tp met  by Tarr ive ,  Ta r r ive  before T n o w  

= >  Tp - - (<  odim)--~ T n o w  

Thus it is possible that Tnow is during Tp, since it is possible 
that Tp contains ("di") Tnow. So the test succeeds. 

Of course, if it is later learned that the car was found to be 
missing during time interval Tmiss, then Tp is constrained to 
be before Tmiss (even though it is still persistent). If Tnow is 
then after or during Tmiss, then it is not possible any longer 
that Tnow is during Tp. 

Managing a system such as this is a difficult problem that 
requires some form of truth maintenance (e.g., see [6]). These 
issues, however, are independent  of the temporal representa- 
tion. All that is shown here is that the necessary temporal 
calculations are easily done within this framework. 

An interesting technique suggested by the above may sim- 
plify much  of the computation required for truth mainte- 
nance for this type of assumption. In particular, let us assume 
that P holds during interval Tp, where  Tp is a persistent 
interval. Furthermore, assume that for any time, P implies Q. 
Then if we test P at t ime t, and find it is true by assumption, 
so we can infer Q during t ime t. However,  if we index Q by 
Tp rather than by t, then we still can use the fact that Q is 
true during t (by assumption), but if we ever  discover further 
constraints on Tp that then eliminate the possibility that t is 
during Tp, then both P and Q will cease to be true (by 
assumption) during t. Thus, by indexing all the consequences 
of P by the same interval, Tp, we can revise our beliefs about 
P and all its consequences simply by adding constraints about 
Tp. While this idea obviously requires further investigation, it 
appears that it may allow a large class of assumption-based 
belief revision to be performed easily. 

8. SUMMARY 
We have described a system for reasoning about temporal 
intervals that is both expressive and computationally effec- 
tive. The representation captures the temporal hierarchy im- 
plicit in many domains by using a hierarchy of reference 
intervals, which precisely control the amount  of deduction 
performed automatically by the system. This approach is par- 

tially useful in domains where  temporal information is impre- 
cise and relative, and techniques such as dating are not possi- 
ble. 
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