
/ESEARCH
COKrNBlmONS

Maintaining Knowledge
about Temporal
Intervals
JAMES F. ALLEN The University of Rochester

lames F. Allen's main
interests are in artificial

intelligence in particular
natural language processing

and the representation of
knowledge.

Author's Present Address:
James F. Allen, Computer

Science Department,
University of Rochester.

Rochester. NY 14627.

The research described in
this paper was supported in

part by the National Science
Foundation under Grants

IST-g0-12418 and
IST-82-10564. and in part

by the Office of Naval
Research under Grant

N00014-80-C-0197.
Permission to copy without

fee all or part of this material
is granted provided that the

copies are not made or
distributed for direct

commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/1100.0832 75¢

1. INTRODUCTION
The problem of representing temporal knowledge and tem-
poral reasoning arises in a wide range of disciplines, including
computer science, philosophy, psychology, and linguistics. In
computer science, it is a core problem of information systems,
program verification, artificial intelligence, and other areas
involving process modeling. (For a recent survey of work in
temporal representation, see the special sections in the April
1982 issues of the ACM SIGART and SIGMOD Newsletters.)

Information systems, for example, must deal with the p~b-
lem of outdated data. One approach to this is simply to delete
outdated data; however, this eliminates the possibility of ac-
cessing any information except that which involves facts that
are presently true. In order to consider queries such as,
"Which employees worked for us last year and made over
$15,000/' we need to represent temporal information. In some
applications, such as keeping medical records, the time course
of events becomes a critical part of the data.

In artificial intelligence, models of problem solving require
sophisticated world models that can capture change. In plan-
ning the activities of a robot, for instance, one must model the
effects of the robot's actions on the world to ensure that a
plan will be effective. In natural language processing re-
searchers are concerned with extracting and capturing tem-
poral and tense information in sentences. This knowledge is
necessary to be able to answer queries about the s e n t e n c e s
later. Further progress in these areas requires more powerful
representations of temporal knowledge than have previously
been available.

This paper addresses the problem from the perspective of
artificial intelligence. It describes a temporal representation
that takes the notion of a temporal interval as primitive. It
then describes a method of representing the relationships be-
tween temporal intervals in a hierarchical manner using con-
straint propagation techniques. By using reference intervals,

ABSTRACT: An interval-based
temporal logic is introduced,
together with a computationally
effective reasoning algorithm based
on constraint propagation. This
system is notable in offering a
delicate balance between
expressive power and the efficiency
of its deductive engine. A notion of
reference intervals is introduced
which captu~s the temporal
hierarchy implicit in many
domains, and which can be used to
precisely control the amount of
deduction performed automatically
by the system. Examples are
provided for a database containing
historical data, a database used for
modeling processes and proce~
interaction, and a database for an
interactive system where the
present moment is continually
being updated.

832 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

the amount of computation involved when adding a fact can
be controlled in a predictable manner. This representation is
designed explicitly to deal with the problem that much of our
temporal knowledge is relative, and hence cannot be de-
scribed by a date (or even a "fuzzy" date).

We start with a survey of current techniques for modeling
time, and point out various problems that need to be ado
dressed. After a discussion of the relative merits of interval-
based systems versus point-based systems in Section 3, a sim-
ple interval-based deduction technique based on constraint
propagation is introduced in Section 4. This scheme is then
augmented in Section 5 with reference intervals, and exam-
ples in three different domains are presented. In the final
sections of the paper, extensions to the basic system are pro-
posed in some detail. These would extend the representation
to include reasoning about the duration of intervals, reasoning
about dates when they are available, and reasoning about the
future given knowledge of what is true at the present.

The system as described in Section 5 has been imple-
mented and is being used in a variety of research projects
which are briefly described in Section 6. Of the extensions,
the duration reasoner is fully implemented and incorporated
into the system, whereas the date reasoner has been designed
but not implemented.

2. BACKGROUND
Before we consider some previous approaches to temporal
representation, let us summarize some important characteris-
tics that are relevant to our work:

• The representation should allow significant imprecision.
Much temporal knowledge is strictly relative (e.g., A is
before B) and has little relation to absolute dates.

• The representation should allow uncertainty of informa-
tion. Often, the exact relationship between two times is
not known, but some contraints on how they could be
related are known.

• The representation should allow one to vary the grain of
reasoning. For example, when modeling knowledge of
history, one may only need to consider time in terms of
days, or even years. When modeling knowledge of com-
puter design, one may need to consider times on the
order of nanoseconds or less.

• The model should support persistence. It should facili-
tate default reasoning of the type, "If I parked my car in
lot A this morning, it should still be there now," even
though proof is not possible (the car may have been
towed or stolen).

This does not exhaust all the issues, and others will come
up as they become relevant. It provides us with a starting
criteria, however, for examining previous approaches. Pre-
vious work can be divided roughly into four categories: state
space approaches, date line systems, before/after chaining,
and formal models.

State space approaches (e.g., [7, 17]) provide a crude sense
of time that is useful in simple problem-solving tasks. A state
is a description of the world (i.e., a database of facts) at an
instantaneous point in time. Actions are modeled in such
systems as functions mapping between states. For example, if
an action occurs that causes P to become true and causes fact
Q to be no longer true, its effect is simulated by simply adding
fact P to the current state and deleting fact Q. If the previous
states are retained, we have a representation of time as a
series of databases describing the world in successive states. In
general, however, it is too expensive to maintain all the pre-

vious states, so most systems only maintain the present state.
While this technique is useful in some applications, it does
not address many of the issues that concern us. Note that
such systems do provide a notion of persistence, however.
Once a fact is asserted, it remains true until it is explicitly
deleted.

In datebase systems (e.g., [4, 5, 12, 13]), each fact is indexed
by a date. A date is a representation of a time such that
the temporal ordering between two dates can be computed by
fairly simple operations. For example, we could use the inte-
gers as dates, and then temporal ordering could be computed
using a simple numeric comparison. Of course, more compli-
cated schemes based on calendar dates and times are typi-
cally more useful. Because of the nice computational proper-
ties, this is the approach of choice if one can assign dates for
every event. Unfortunately, in the applications we are consid-
ering, this is not a valid assumption. Many events simply
cannot be assigned a precise date. There are methods of geno
eralizing this scheme to include ranges of dates in which the
event must occur, but even this scheme cannot capture some
relative temporal information. For instance, the fact that two
events, A and B, did not happen at the same time cannot be
represented using fuzzy dates for A and B. Either we must
decide that A was before B, or B was before A, or we must
assign date ranges that allow A and B to overlap. This prob-
lem becomes even more severe if we are dealing with time
intervals rather than time points. We then need fuzzy date
ranges for both ends of the interval plus a range for the
minimum and maximum duration of the interval.

The next scheme is to represent temporal information us-
ing before/after chains. This approach allows us to capture
relative temporal information quite directly. This technique
has been used successfully in many systems (e.g., [4, 13]). As
the amount of temporal information grows, however, it suffers
from either difficult search problems (searching long chains)
or space problems (if all possible relationships are precom-
puted). This problem can be alleviated somewhat by using a
notion of reference intervals [13], which will be discussed in
detail later. Note that a fact such as "events A and B are
disjoint" cannot be captured in such systems unless disjunc-
tions can be represented. The approach discussed in this pa-
per can be viewed as an extension of this type of approach
that overcomes many of its difficulties.

Finally, there is a wide range of work in formal models of
time. The work in philosophy is excellently summarized in a
textbook by Rescher and Urrquhart [16]. Notable formal
models in artificial intelligence include the situation calculus
[14], which motivates much of the state space based work in
problem solving, and the more recent work by McDermott
[15]. In the situation calculus, knowledge is represented as a
series of situations, each being a description of the world at an
instantaneous point of time. Actions and events are functions
from one situation to another. This theory is viable only in
domains where only one event can occur at a time. Also,
there is no concept of an event taking time; the transforma-
tion between the situations cannot be reasoned about or de-
composed. The situation calculus has the reverse notion of
persistence: a fact that is true at one instance needs to be
explicitly reproven to be true at succeeding instants.

Most of the work in philosophy, and both the situation
calculus and the work by McDermott, are essentially point-
based theories. Time intervals can be constructed out of
points, but points are the foundation of the reasoning system.
This approach will be challenged in the upcoming section.

One other formal approach, currently under development,
that is compatible with an interval-based temporal representa-

November 1983 Volume 26 Number 11 Communications of the ACM 833

RESEARCH CONTRIBUTIONS

tion is found in the Naive Physics work of Hayes [10, 11]. He
proposes the notion of a history, which is a contiguous block
of space-time upon which reasoning can be organized. By
viewing each temporal interval as one dimension of a history,
this work can be seen as describing a reasoning mechanism
for the temporal component of Naive Physics.

3. TIME POINTS VS. TIME INTERVALS
In English, we can refer to times as points or as intervals.
Thus we can say the sentences:

We found the letter at twelve noon.
We found the letter yesterday.

In the first, "at twelve noon" appears to refer to a precise point
in time at which the finding event occurred (or was occur-
ring). In the second, "yesterday" refers to an interval in which
the finding event occurred.

Of course, these two examples both refer to a date system
where we are capable of some temporal precision. In general,
though, the references to temporal relations in English are
both implicit and vague. In particular, the majority of tem-
poral references are implicitly introduced by tense and by the
description of how events are related to other events. Thus
we have

We found the letter while John was away.
We found the letter after we made the decision.

These sentences introduce temporal relations between the
times (intervals) at which the events occurred. In the first
sentence, the temporal connective "while" indicates that the
time when the find event occurred is during the time when
John was away. The tense indicates that John being away
occurred in the past (i.e., before now).

Although some events appear to be instantaneous (e.g., one
might argue that the event "finding the letter" is instanta-
neous), it also appears that such events could be decomposed
if we examine them more closely. For example, the "finding
the letter" might be composed of "looking at spot X where the
letter was" and "realizing that it was the letter you were
looking at." Similarly, we might further decompose the "real-
izing that it was the letter" into a series of inferences that the
agent made. There seems to be a strong intuition that, given
an event, we can always "turn up the magnification" and look
at its structure. This has certainly been the experience so far
in physics. Since the only times we consider will be times of
events, it appears that we can always decompose times into
subparts. Thus the formal notion of a time point, which
would not be decomposable, is not useful. An informal notion
of time points as very small intervals, however, can be useful
and will be discussed later.

There are examples which provide counterintuitive results
if we allow zero-width time points. For instance, consider the
situation where a light is turned on. To describe the world
changing we need to have an interval of time during which
the light was off, followed by an interval during which it was
on. The question arises as to whether these intervals are open
or closed. If they are open, then there exists a time (point)
between the two where the light is neither on nor off. Such a
situation would provide serious semantic difficulties in a tem-
poral logic. On the other hand, if intervals are closed, then
there is a time point at which the light is both on and off.
This presents even more semantic difficulties than the former
case. One solution to this would be to adopt a convention that
intervals are closed in their lower end and open on their
upper end. The intervals could then meet as required, but
each interval would have only one endpoint. The artificiality

of this solution merely emphasizes that a model of time based
on points on the real line does not correspond to our intuitive
notion of time. As a consequence, we shall develop a repre-
sentation that takes temporal intervals as primitive.

If we allowed time points, intervals could be represented by
modeling their endpoints (e.g., [4]) as follows: Assuming a
model consisting of a fully ordered set of points of time, an
interval is an ordered pair of points with the first point less
than the second. We then can define the relations in Figure 1
between intervals, assuming for any interval t, the lesser end-
point is denoted by t - and the greater by t+.

We could implement intervals with this approach, even
given the above argument about time points, as long as we
assume for an interval t that t - < t+, and each assertion
made is in a form corresponding to one of the interval rela-
tions. There are reasons why this is still inconvenient, how-
ever. In particular, the representation is too uniform and does
not facilitate structuring the knowledge in a way which is
convenient for typical temporal reasoning tasks. To see this,
consider the importance of the during relation. Temporal
knowledge is often of the form

event E' occurred during event E.

A key fact used in testing whether some condition P holds
during an interval t is that if t is during an interval T, and P
holds during T, then P holds during t. Thus during relation-
ships can be used to define a hierarchy of intervals in which
propositions can be "inherited."

Furthermore, such a during hierarchy allows reasoning
processes to be localized so that irrelevant facts are never
considered. For instance, if one is concerned with what is true
"today," one need consider only those intervals that are dur-
•ng "today," or above "today" in the during hierarchy. If a fact
is indexed by an interval wholly contained by an interval
representing "yesterday," then it cannot affect what is true
now. It is not clear how to take advantage of these properties
using the point-based representation above.

4. MAINTAINING TEMPORAL RELATIONS
4.1. The Basic Algorithm
The inference technique described in this section is an at-
tempt to characterize the inferences about time that appear to
be made automatically or effortlessly during a dialogue, story
comprehension, or simple problem-solving. Thus it should
provide us with enough temporal reasoning to participate in
these tasks. It does not, however, need to be able to account
for arbitrarily complex chains of reasoning that could be
done, say, when solving a puzzle involving time.

We saw above five relations that can hold between inter-
vals. Further subdividing the during relation, however, pro-

Interval Relation Equivalent Relations on Endpoints

t<s t+ < s-

t = s (t- = s -) & (t + : s +)

toverlapss (t- < s-) & (t+ > s-) & (t+ < s+)

t meets s t+ = s-

t durings ((t- > s-) & (t+ = (s+)) or
((t- >= s-) & (t+ < s+))

FIGURE 1. Interval Relation Defined by Endpoints.

834 Communicatimls of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

vides a better computational model? Considering the inverses
of these relations, there are a total of thirteen ways in which
an ordered pair of intervals can be related. These are shown
in Figure 2.

Sometimes it is convenient to collapse the three during
relations (d, s, f) into one relationship called dur, and the
three containment relations (di, si, fi) into one relationship
called con. After a quick inspection, it is easy to see that these
thirteen relationships can be used to express any relationship
that can hold between two intervals.

The relationships between intervals are maintained in a
network where the nodes represent individual intervals. Each
arc is labeled to indicate the possible relationship between the
two intervals represented by its nodes. In cases where there is
uncertainty about the relationship, all possible cases are en-
tered on the arc. Note that since the thirteen possible relation-
ships are mutually exclusive, there is no ambiguity in this
notation. Figure 3 contains some examples of the notation.
Throughout, let Ni be the node representing interval i. Notice
that the third set of conditions describes disjoint intervals.

Throughout this paper, both the above notations will be
used for the sake of readability. In general, if the arc asserts
more than one possible relationship, the network form will be
used, and in the case where only one relationship is possible,
the relation form will be used.

For the present, we shall assume that the network always
maintains complete information about how its intervals could
be related. When a new interval relation is entered, all conse-
quences are computed. This is done by computing the transi-
tive closure of the temporal relations as follows: the new fact
adds a constraint about how its two intervals could be related,
which may in turn introduce new constraints between other
intervals through the transitivity rules governing the temporal
relationships. For instance, if the fact that i is during j is
added, and j is before k, then it is inferred that i must be
before k. This new fact is then added to the network in an
identical fashion, possibly introducing further constraints on
the relationship between other intervals. The transitivity rela-
tions are summarized in Figure 4.

The precise algorithm is as follows: assume for any tem-
peral relation names r l and r2 that T(rl, r2) is the entry in
the transitivity table in Figure 4. Let R1 and R2 be arc labels,
assume the usual set operations (N for intersection, U for
union, C for proper subset), and let e be the empty set. Then
constraints (R 1, R2) is the transitivity function for lists of rela-
tion names (i.e., arc labels), and is defined by:

Constraints (R1, R2)
C~--e;
For each rl in R1

For each r2 in R2
C ~ C U T(rl, r2);

Return C;

Assume we have a queue data structure named ToDo with
the appropriate queue operations defined. For any two inter-
vals i, j, let N(i, j) be the relations on the arc between i and j
in the network, and let R(i, j) be the new relation between i
and j to be added to the network. Then we have the follow-
ing algorithm for updating the temporal network:

To Add R(i, I')
Add (i, j) to queue ToDo;
While ToDo is not empty do

1 This fact was pointed out to me by Marc Vilain and was first util ized in his
sys tem [18].

Relation Symbol Symbol for
Inverse

X before Y < >

X equal Y = =

X meets Y m mi

X overlaps Y o oi

X during Y d di

X starts Y s si

X finishes Y f fi

Pictoral
Example

XXX YYY

XXX
YYY

XXXYYY

XXX
YYY

XXX
YYYYYY

XXX
YYYYY

XXX
YYYYY

FIGURE 2. The Thirteen Possible Relationships.

Relation Network Representation

1. i duringj N i --(d)~ Nj

2. i during j or N i --(< d di)--, Nj
i before j or
j during i

3. (i < j) o r (i > j) o r N i --(< > m mi)--, Nj
i meets j or
j meets 1

FIGURE 3. Representing Knowledge of Temporal Relations
in a Network.

b e g i n

Get next (i, j) from queue ToDo;
N(i, i) ~ R(i, 1);
For each node k such that Comparable(k, j) do
begin

R(k, j) ~-- N(k, l] N Constraints(N(k, i), R(i, j))
If R(k, i) C N(k, i)

then add (k, i) to ToDo;
end
For each node k such that Comparable(i, k) do
begin

R(i, k) ~-- N(i, k) N Constraints(R(/, j), N(j, k))
If R(i, k) C N(k, i)

then add (i, k) to ToDo;
end

end;

We have used the predicate Comparable(i, j) above, which
will be defined in Section 5. For the present, we can assume
it always returns true for any pair of nodes.

4.2. An Example
Consider a simple example of this algorithm in operation.
Assume we are given the facts:

S overlaps or meets L

S is before, meets, is met by, or after R.

November 1983 Volume 26 Number 11 Communications of the ACM 835

RESEARCH COJffRIBUllONS

B r2 C < > d di o oi m mi s si f fi
A r l B

"be fo re "
<

<

"a f ter " no
> info

"during"
d

no < o < < < o < < o <
info m d m d m d

S S S

> > oi
mi d

f

< > d

"contains" < o > oi o oi
di m di di mi dur

fi si con

< "ove r l aps "
0

" o v e r - < o
l apped -by " m di
oi fi

< "meets"
m

"me t -by " < o
mi m di

fi

< "starts"
S

"s tar ted by" < o
si m di

fi

< " f in ishes"
f

" f in ished - by"
fi

<

> > oi > > oi > > oi >
m i d mi d m i d

f f f

no < o > oi < > d > oi
info m d mi d m i d

s f f

di o di oi di o di oi di di fi di
fi si fi si o

> oi o < o < o oi < oi
di mi d m di o dur di

si s fi m con si

di
fi
0

> oi > oi o oi > o > oi oi
d mi di dur oi di d >
f si con mi fi f mi

I =

> oi o < < o < f
mi di d d fi

si s s =

m

> oi > oi > s > d
d d si f
f f = oi

<

> d < o < o oi < mi s
m d i m d f

fi

> oi di o oi o mi s si
d f di fi di fi =

> d > oi o > oi m > d
mi di d mi

si s

> oi o di o oi m si oi
mi di d di si di

si s

m

>

s si

si

> oi
mi

di

< 0

m d
S

>

d

di si
oi

d
S

0

oi

mi

oi

f fi

<

>

< 0
m d

S

di

<

0
m

oi
di
si

<

mi

< m

0

di

f fi

FIGURE 4. The Transitivity Table for the Twelve Temporal Relations (omittin 9 "=").

836 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONnUBUnONS

These facts might be derived from a story such as the follow-
ing:

John was not in the room when I touched the switch to
turn on the light.

where we let S be the time of touching the switch, L be the
time the light was on, and R be the time that John was in the
room. The network storing this information is

R ~---(< mmi >) - - S - -(om)----~ L.

When the second fact is added, the algorithm computes a
constraint between L and R (via S) by calling the function
Constraints with its two arguments, R1 and R2, set to {oimi}
and {(mmi)I, respectively. Note that we obtained the inverse
of the arc from S to L simply by taking the inverse of each
label. Constraints uses the transitivity table for each pair of
labels and returns the union of all the answers. Since

T(oi, <) = (< omdifi)

T(oi, m) = (odifi)

T(oi, mi) = (>)

r(oi, >) = (>)

T(mi, <) = (< omdifi)

T(mi, m) = (ssi =)

T(mi, mi) = (>)

T(mi, >) = (>)

we compute (< > omdi s sift =) as the constraint between L
and R and thus obtain the network

R ~--(< mmi >)- - S - -(om)--~ L

1' I
- - -(< > ooimdi s sift =)

Let us consider what happens now when we add the fact

L overlaps, starts, or is during R

This fact might arise from a continuation of the above story
such as

But John was in the room later while the light went out

Taking the intersection of this constraint with the previously
known constraint between L and R to eliminate any impossi-
ble relationships gives

L - -(os)---~ R

To add this constraint, we need to propagate its effects
through the network. A new constraint between S and R can
be calculated using the path:

S - -(om)--~ L - -(os)--~ R

From the transitivity tables, we find:

T(o,o) = (< o m)

T(o, s) = (o)

T(m, o) = (<)

T(m, s) = (m)

Thus the inferred constraint between S and R is

S - -(< om)--~ R.

Intersecting this with our previous constraint between S and
R yields

S - -(< m)---~ R.

With respect to the example story, this is equivalent to infer-
ring that John entered the room (i.e., R started) either after I
touched the switch or at the same time that I finished touch-
ing the switch. Thus the new network is:

R <--(< m)-- S --(om)--~ L

' t I

. (o s)

Of couse, if there were other nodes in the network, there
would be other constraints derived from this new informa-
tion. Thus, if we added a new interval D, say with the con-
straint D - -(d)--~ S, we would infer the following new rela-
tionships as well:

D - -(<)--~ R

D - -(< o m d s)---~ L.

4.3 . A n a l y s i s
A nice property of this algorithm is that it only continues to
operate as long as it is producing new further constrained
relationships between intervals. Since there are at most thir-
teen possible relationships that could hold between two inter-
vals, there are at most thirteen steps that could modify this
relationship. Thus for a fixed number of nodes N, the upper
limit on the number of modifications that can be made, irre-
spective of how many constraints are added to the network, is
13 × the number of binary relations between N nodes, which
is:

(N - 1) (N - 2)
1 3 x

2

Thus, in practice, if we add approximately the same number
of constraints as we have nodes, the average amount of work
for each addition is essentially linear (i.e., N additions take
O(N 2) time; one addition on average takes O(N) time).

The major problem with this algorithm is the space re-
quirement. It requires O(N 2) space for N temporal intervals.
Methods for controlling the propagation, saving time and
space, will be discussed in the next section.

It should be noted that this algorithm, while it does not
generate inconsistencies, does not detect all inconsistencies in
its input. In fact, it only guarantees consistency between three
node subnetworks. There are networks that can be added
which appear consistent by viewing any three nodes, but for
which there is no consistent overall labeling. The network
shown in Figure 5 is consistent if we consider any three
nodes; however, there is no overall labeling of the network. 2
To see this, if we assign the relationship between A and C,
which could be f or fi according to this network, to either f
alone, or fi alone, we would arrive at an inconsistency. In
other words, there is no consistent labeling with A - -(f)--~ C,
or with A - -(fi)--~ C, even though the algorithm accepts A
- -(f f i) ~ C.

To ensure total consistency, one would have to consider
constraints between three arcs, between four arcs, etc. While
this can be done using techniques outlined in Freuder [9], the
computational complexity of the algorithm is exponential. In
practice, we have not encountered problems from this defi-
ciency in our applications of the model. We can verify the
consistency of any subnetwork, if desired, by a simple back-
tracking search through the alternative arc labelings until we

2 This network is due to Henry Kautz, personal communication.

November1983 Volume26 Number 11 Communications of the ACM 837

RESEARCH CONTRIBUTIONS

s

D

ffi
....~ C .~,,v

m

FIGURE 5. An Inconsistent Labeling.

arrive at a labeling for the whole subnetwork in which every
arc has only one label.

5. CONTROI.I.ING PROPAGATION: REFERENCE
INTERVALS
In order to reduce the space requirements of the representa-
tion without greatly affecting the inferential power of the
mechanism, we introduce reference intervals. Formally, a ref-
erence interval is simply another interval in the system, but it
is endowed with a special property that affects the computa-
tion. Reference intervals are used to group together clusters of
intervals for which the temporal constraints between each
pair of intervals in the cluster is fully computed. Such a
cluster is related to the rest of the intervals in the system only
indirectly via the reference interval.

5.1. Using Reference Intervals
Every interval may designate one or more reference intervals
(i.e., node clusters to which it belongs). These will be listed in
parentheses after the interval name. Thus the node names

II(R1)

I2(R1, R2)

describe an interval named I1 that has a reference interval
R1, and an interval named I2 that has two reference intervals
R1 and R2. Since I2 has two reference intervals, it will be
fully connected to two clusters. An illustration of the connect-
edness of such a network is formed in Figure 6.

The algorithm to add relations using reference intervals is
identical to the previous addition algorithm except that the
comparability condition is no longer universally true. For any
node N, let Refs(N) return the set of reference intervals for N.
For any two nodes K and J, Comparable(K, J) is true if

1) Refs(K) A Refs(J) is not null, that is, they share a reference
interval; or

2) K c Refs(J); or
3) J c Refs(K).

Since reference intervals are simply intervals themselves,
they may in turn have their own reference intervals, possibly
defining a hierarchy of clusters. In most of the useful applica-
tions that we have seen, these hierarchies are typically tree-
like, as depicted in Figure 7.

If two intervals are not explicitly related in the network, a
relationship can be retrieved by finding a path between them
through the reference intervals by searching up the reference
hierarchy until a path (or all paths) between the two nodes
are found. Then, by simply applying the transitivity relation-
ships along the path, a relationship between the two nodes
can be inferred. If one is careful about structuring the refer-
ence hierarchy, this can be done with little loss of information
from the original complete propagation scheme.

To find a relationship between two nodes I and], where
N(i, j) represents the network relation between nodes i and j
as in Section 4.1, we use the algorithm:

If N(I, J) exists
then return N(I, J)
else do

Paths := Find-Paths(I, J)
For each path in Paths do

R := R CI Constrain-along-path(path)
return R;

end;

The function Find-Paths does a straightforward graph
search for a path between the two nodes with the restriction
that each step of the path must be between a node and one of
its reference intervals except for the one case where a direct
connection is found. Thus, a path is of the general form

n l , n 2 , . . . , n k , n k + l , • • • , n m

where all of the following hold:

- - for all i from I to k - 1, ni+l is a reference interval for ni;
- - nk and nk+l are connected explicitly;
- - for all i from k + 1 to m - 1, ni is a reference interval for

n~+l;

! 1 (RI) 17(R2)

/ I \ / 1 \ 4 :R14,,. /I21R 'R21 6(R2)
I3(R1) I5(R2)

FIGURE 6. The Connectness of a Network with
Two Reference Intervals.

R2(R1)

R3(R2) ~ R4(R2)

/ \
1 1(R3) 12(R3) 14(R4)-I 5(R4)

R1

R5(R1)

/ \
Z ,

FIGURE 7. A Tree-Like Hierarchy Based on Reference Intervals.

838 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

LIFE

< d

PRESCHOOL(LIFE) ~ PREGRAD(LIFE) ~POSTGRAD(LIFE)

d POSTGRAOI

PRIM(PREGRAD) ~ SECOND(PREGRAD) ~ UNIV(PREGRAD)

CHESS(PRIM) WlN(UNIV)

FIGURE 8. A Typical Reference Hierarchy
for a History of a Person.

The function Constrain-along-path simply takes a path and
computes the transitivity constraints along it. Thus if a path
consisted of the nodes nl, n2, n3 nm, we compute the
relation between nl and nm as follows:

R := N(nl, n2)

R := Constraints(R, N(nz, n3))

R := Constraints(R, N(n3, n4))

R := Constraints(R, N(nm-~, nm))

where Constraints was defined in Section 4.1.

5.2. Examples
There are no restrictions imposed by the system on the use of
reference intervals. Their organization is left up to the system
designer. Certain principles of organization, however, are par-
ticularly useful in designing systems that remain efficient in
retrieval, and yet capture the required knowledge. The most
obvious of these is a consequence of the path search algo-
rithm in the previous section: the more tree-like the reference
hierarchy, the more efficient the retrieval process. The others
considered in this section exploit characteristics of the tem-
poral knowledge being stored.

With domains that capture historical information, it is best
to choose the reference intervals to correspond to key events
that naturally divide the facts in the domain. Thus, if model-
ing facts about the history of a particular person, key events
might be their birth, their first going to school, their gradua-
tion from university, etc. Kahn and Gorry [13] introduced
such a notion of reference events in their system. Other times
in their system were explicitly related to these reference
events (i.e., points). In our system, the intervals between such
key events would become the reference intervals. Other time
intervals would be stored in the cluster(s) identified by the
reference intervals that contain them. Thus, we could have a
series of reference intervals for the time from birth to starting
school (PRESCHOOL), during school (PREGRAD), and after
graduation (POSTGRAD). In addition, certain reference inter-
vals could be further decomposed. For example, PREGRAD
could be divided into primary and secondary school (PRIM
and SECOND) and the time at university (UNIV). The times
of the rest of the events would be stored with respect to this
reference hierarchy. Figure 8 depicts this set of facts including
its reference hierarchy, plus intervals such as the time spent

learning chess (CHESS), the time the person won the state
lottery (WIN), and the time of the first job (JOB). If an event
extended over two reference intervals, then it would be
stored with respect to both. For example, if learning to play
chess occurred during primary and secondary school, the in-
terval CHESS would have two reference intervals, namely,
PRIM and SECOND.

We can now trace the retrieval algorithm for this set of
facts. Let us find the relationship between CHESS and WIN.
There is no explicit relationship between the intervals, so we
must search up the reference hierarchy. Only one path is
found, namely:

CHESS(PRIM)- -(d)---~ PRIM(PREGRAD) - -(<)-.

UNIV(PREGRAD) - -(di)--~ WIN(UNIV)

Applying the transitivity relations along the first path, we
infer first that

CHESS before UNIV

and then

CHESS before WIN.

The fact that CHESS is before JOB can be inferred similarly
from the path

CHESS- -(d)--> PRIM - -(s)--, PREGRAD - -(m)--~

POSTGRAD - -(di)--> JOB.

Consider another domain, namely, that of representing in-
formation about processes or actions. Such knowledge is re-
quired for problem-solving systems that are used to guide the
activity of a robot. Each process can be described as a partial
sequence of subprocesses. Such a decomposition is not de-
scribed in absolute temporal terms (i.e., using dates), but by
the subprocess's relation to its containing process. Thus a
natural reference hierarchy can be constructed mirroring the
process hierarchy. For example, consider a process P consist-
ing of a sequence of steps P1, P2, and P3 and another process
Q consisting of subprocesses Q1 and Q2 occurring in any
order, but not at the same time. Furthermore, let Q2 be
decomposed into two subprocesses Q21 and Q22, each occur-
ring simultaneously. To simulate a world in which process P
begins before Q begins, we can construct the reference hier-
archy in Figure 9. With this organization we can infer rela-
tionships between subprocesses of Q and subprocesses of P in
the same manner as above. As long as the decomposition of

November1983 Volume26 Number 11 Communications of the ACM 839

RESEARCH CONTPJBUTIONS

(<m o)
Q(x) ~ P(x)

Q1 (Q) > Q2(Q) P1 (p).i.-p2(p)~ P3(P)

e
Q21 (Q2) ~ 12122(1212)

FIGURE 9. A Reference Hierarchy Mirror-
ing a Process Hierarchy.

processes or actions can be done independently (such as in
the NOAH system [17]), this organization will capture all the
relevant temporal knowledge.

More interesting cases arise when there may be interac-
tions among subprocesses. For instance, we might want to add
that Q1 must occur before Q21. Note that, in adding Q1
before Q21, we can infer a new relationship between Q1 and
Q2 from the path

QI(Q) - -(<)--~ Q21(Q2) - -(e)--~ Q2(Q)

because Q1 and Q2 share the reference interval Q. It does not
matter that Q21 does not share a reference interval with Q1.
In more complicated cases, we will find relationships between
subprocesses such that an important relationship between the
processes containing the subprocesses will not be inferred
because they do not share a reference interval. For instance, if
we learn that Q2 overlaps P1, adding this will not cause the
relationship between Q and P to be constrained to simply the
overlaps relation even though that would be a consequence in
the system without reference intervals. There is no path con-
sisting of two arcs from Q to P that is affected by adding Q2
overlaps P1.

To allow this inference, we need to reorganize the refer-
ence hierarchy. For example, we could, when adding a rela-
tion between two noncompatible nodes, expand one of the
node's reference intervals with the other node's reference
intervals. In this scheme, to add Q2 ovedaps P1, we would
first add P to Q2's reference interval list. Then adding the
relation will allow the appropriate changes. In particular,
among others, we would infer that

Q2(Q, P) - -(o)--~ P(X)

from the path

Q2(Q, P) - -(o)-+ PI(P) - -(s)-+ P(X),

and then infer

Q(X) - -(o)--~ P(X)

from the path

Q(X) - -(di)-+ Q2(Q, P) - -(o)--, P(X)

and the previous constraints between Q and P. The final state
of the processes after these two additions is summarized in
Figure 10.

Manipulating the reference hierarchies as in this example
can be effective if used sparingly. With overuse, such tricks
tend to "flatten out" the reference hierarchy as more intervals
become explicitly related. In domains where such interactions
are rare compared with the pure decompositional interac-
tions, it can be very effective.

5.3. Representing the Present Moment
The technique of reference interval hierarchies provides a
simple solution to the problem of representing the present
moment. In many applications, such as natural language proc-
essing and process modeling, the present is constantly moving
into the future. Thus a representation of NOW must allow for
frequent updating without involving large-scale reorganization
of the database each time.

Suppose we have a database in which all assertions are
indexed by the temporal interval over which they hold. As
time passes, we are interested in monitoring what is true at
the present time, as well as in the past and future. The
method suggested here is to represent NOW as a variable that,
at any specific time, is bound to an interval in the database.
To update NOW, we simply reassign the variable to a new
interval that is after the previous interval representing the
present moment. The key observation is that while the pre-
sent is continually changing, most of the world description is
remaining the same. We can exploit this fact by using refer-

FIGURE 10. The Process Knowledge
After Two Updates.

o
Q(x) ~ P(x)

d d o s d < f

Q1 (Q) - . .~ Q2 (QP) - - i , - P1 (P) --~,.- P2 (P) > P3(P)

t

Q21 (Q2) ~ Q22(A2)

840 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBImONS

ence intervals to control the inferences resulting from updat-
ing NOW.

For example, let NOW be interval N1, which is during its
reference interval R1. An example state of the database
would be

NI(R1) during R1

R1 before I1, R1 after I2, R1 during I3

From this we can infer easily that the present (i.e., N1) is
during 13, before I1, and after 12. If NOW then is updated
(slightly), N2 can be defined as the new NOW using the same
reference interval by adding the facts

N2(R1) during R1, N2(R1) after NI(R1)

Thus, NOW has been updated but most of the relations in the
database have been unaffected, for the effects of N2 will only
propagate to intervals referenced by R1. The reference inter-
val R1 has "protected" the rest of the database from a minor
change in the present moment.

Of course, eventually NOW will cease to be during R1 and
a new reference interval will be needed. This will involve a
more major update to the database, but the amount of work
can be reduced if R1 itself has a reference interval that "pro-
tects" much of the database from it.

Thus we need a hierarchy of reference intervals, each con-
taining the present moment. This hierarchy could be designed
to mirror the set of English terms that can be used to refer to
the present. For example, in English we can refer to the exact
moment of an utterance (e.g., at a race, the starter may say
"Go now!"), as well as to larger intervals such as "this morn-
ing," "today," and "this year." We can also refer to more
event-oriented intervals such as "during this lecture" and
"while at this bar." These are the types of intervals that
should be maintained in the hierarchy representing the pre-
sent. Furthermore, these intervals typically have well defined
starting and termination points. Thus it is reasonable to as-
sume that the temporal database will receive explicit notifica-
tion when one of them ceases to contain the present. This
allows the following important assumption:

When updating the NOW interval, unless otherwise stated,
its relationship to its reference interval(s) remains constant.

When one of the reference intervals in the hierarchy ceases
to contain the present moment, a new reference interval is
selected. (This new interval should usually be provided by
the user.) This update is done in the identical fashion as
described above with NOW. In particular, the relationship
with the higher-level reference interval remains constant. A
new NOW interval, below the new reference interval in the
hierarchy, must be introduced. For example, the beginning of
a new day would make much of the old hierarchy part of the
past (i.e., "yesterday").

While many intervals will be generated by this succession
of intervals for NOW, many of them can be garbage collected
when the reference intervals are updated. In particular, any
interval that is not used to index any events or facts may be
removed from the database. In a system modeling a natural
language dialogue, a large number of these intervals would be
used only to index the time of an utterance: These generally
can be deleted without harm.

6. DISCUSSION
The temporal representation described is notable in that it is
both expressive and computationally feasible. In particular, it
does not insist that all events occur in a known fixed order, as

in the state space approach, and its allows disjunctive knowl-
edge, such as that event A occurred either before or after
event B, not expressible in date-based systems or simple sys-
tems based on before/after chaining. It is not as expressive as
a full temporal logic (such as that of McDermott [15]), but
these systems do not currently have viable implementations.

This balance between expressive power and computational
efficiency is achieved by the restricted form of disjunctions
allowed in the system. One can only assert disjunctive infor-
mation about the relationship of two intervals. In other words,
we can assert that A is before or meets B, but not that (A
meets B) or (C before D). This limited form of disjunction is
ideal for the constraint propagation algorithm.

The system has been implemented and is being used in a
variety of applications. Both FRANZ LISP [8] and INTERLISP
versions are running on a VAX 11/780 under UNIX. The
system presently also includes the duration reasoner de-
scribed below. It is currently being used in research in repre-
senting actions, events, and interactions that arise in natural
language dialogues [1]. We are also using the representation as
a world model for research in automatic problem-solving sys-
tems [3]. Such systems have long been constrained by their
inadequate temporal models.

Vilain [18] has implemented a version of this system
which, at the cost of greater space requirements, can perform
consistency maintenance. In other words, in his system, when
an inconsistency is found, the set of facts that caused the
inconsistency can be identified. This system also explicitly
allows time points in the representation and has a larger
transitivity table, including all interval/point and point/point
interactions. This violates the semantics of the interval repre-
sentation, and so has not been adopted in our present system.

Let us consider why we would like time points, however.
They seem to be referred to in English. We can, for instance,
talk about the beginning and ending of events. There is no
reason to assume, however, that these "endpoints" are truly
zero-width points rather than intervals small enough so that
they appear to be instantaneous. What this suggests is that
there might be a minimum duration e, such that all intervals
of duration less than e would be viewed as points. This would
simplify our reasoning about such times for we would not
have to worry about the possibility of two such intervals
overlapping. It would be assumed either that these small in-
tervals are equal or that one is before the other.

But this minimum size cannot be fixed in advance. A histo-
rian, for instance, may be happy to consider days as points,
whereas the computer engineer, when reasoning about a logic
circuit, would consider a day to be an eternity. Thus the
interval size, where it is appropriate to simplify reasoning by
assuming point-like times, varies with the reasoning task.

7. FUTURE RESEARCH AND EXTENSIONS
There are many areas in which this system is being extended.
In particular, an interface to a duration reasoner has been
incorporated into the system, and a system for reasoning
about dates will be implemented in the near future. Finally,
we are investigating reasoning systems that depend on the
notion of persistence.

7.1. Duration Reasoning
We have designed a duration reasoning system based on the
same principles as the interval relation reasoner described
above. In particular, it is designed to allow relative informa-
tion (e.g., interval A took longer than interval B) as well as
representing uncertainty. The reasoner is again based on con-

November 1983 Volume 26 Number 11 Communications of the ACM 841

RESEARCH CONTRIBUTIONS

straint propagation and a notion of reference durations can be
defined.

Very briefly, the duration relationship between two inter-
vals is expressed by outlining a range that includes the multi-
plicative factor which the duration of the first would be mul-
tiplied by to get the duration of the second. For example, the
fact that the duration of A is less than the duration of B,
expressed as dur(A) < dur(B), is represented by the relation
A - -(0(1))--) B. In other words, dur(A) > = 0*dur(B) and
dur(A) < l*dur(B). The parentheses about the factor I indi-
cate an open endpoint; thus the durations of A and B could
not be equal. Both the upper and lower duration limits may
be open or closed.

Duration information is encoded in a network orthogonal to
the relationship network. Propagation across two duration re-
strictions is accomplished simply by multiplying the respec-
tive upper and lower duration limits. For example, if we have
the facts

dur(A) < = dur(B)

dur(C) < = dur(B)

dur(B) < 2*dur(C)

which in network form would be

A --(01)--~ B --(1(2))--) C

we derive the relation

A - -(0(2))--~ C.

The duration reasoner and the interval reasoner are not
independent of each other, however. They constrain each
other by rules such as the following:

If I --(dsf)--~ J then dur(I) < dur(J).

Using this rule, constraints introduced in one network may
introduce constraints in the other. In many examples, the
networks may exchange information back and forth multiple
times before the propagation terminates.

Reference durations correspond to the notion of scales, or
common units. Constraints do not propagate through a refer-
ence duration. Thus, if the duration HOUR is a reference
duration, and we add that dur(A) is between 1 and 2 hours,
and dur(B) is less than one half an hour, no relation between
dur(A) and dur(B) will be inferred. It will be derived at re-
trieval time via the reference duration HOUR. Further details
on the duration reasoner can be found in [2].

7.2. Date Lines
Having considered the maintenance of relative temporal in_for-
mation in detail, we now consider how to exploit date infor-
mation when available. Let a date line be any representation
consisting of a fully ordered set of values taken to correspond
to times. A date line corresponding to a simple calendar could
be defined as follows:

values: ordered triples of integers, representing year, month
(1-12), and day (1-31) (for example, (50 3 25) represents
March 25, 1950)

comparison operation: orders triples in the obvious manner
(for example, (50 3 25) < (75 1 1))

With date lines, the comparison operation between two times
on the same date line is relatively inexpensive compared to
searching the network of temporal relations.

Date line information could be incorporated into the pre-
sent system by allowing any interval in the network to have
date line information associated with it which identifies the
dating system and dates associated with its start and end. The

name of the date line is necessary to identify the operations
for comparing values. A new interval, added with date line
information specified, may affect the relationship to its refer-
ence interval and to the other intervals in its "reference
class." For example, if two intervals are dated by the same
date line, and have date values specified, those values can be
used to calculate the exact relation between the intervals. If
this relation is more specific than the information stored in
the relational network, the network is updated and its effects
propagated as usual.

When retrieving a relationship between two intervals dated
by the same date line, the date information should be consid-
ered first before applying the usual network retrieval mecha-
nism. Sometimes, however, the date line information will not
be specific enough to pinpoint a specific relationship, and a
network search will still be necessary. It may occur that one
of the intervals being considered is dated but the other is not.
In this case, the date information may be used only if a
relationship can be found between the nondated interval and
another interval dated by the same date line. In general, this
may be too expensive to consider. A specific case that could
be very useful, however, occurs when a reference interval
involved in the search is dated by the appropriate date line.
We can then compare the two dated intervals to obtain a
relationship, which can be propagated back to the nondated
interval.

A useful date line for dialogue systems is the time-of-day
line. A reasonable implementation of this might have the
basic duration of one minute, and have values consisting of
an hour-minute pair. If the system were given access to a
clock, this date line could be used extensively in the N O W
hierarchy. Of course, the relative time database is still r e - ,
quired to store the facts that are acquired during the dialogue
as facts typically hold for much longer than the time that they
are being talked about.

If the system does not have such easy access to an internal
clock, it may still get time-of-day information occasionally
during a dialogue. In this case, some of the NOW intervals
will map onto the time-of-day line, while others will only be
related to it by some relation (e.g., after 10 o'clock). In such a
scheme, a new reference interval for the NOW interval would
be created each time a precise time-of-day value was identi-
fied. For example, if the system learns that it is presently 10
o'clock, it can create an "after 10 o'clock" reference interval in
which the NOW intervals will be contained until the next
specific time is acquired. Whether such a technique is feasible
requires further search.

7.3. Persistence of Intervals
The last requirement described in the introduction was that
the representation should facilitate plausible inferences of the
form "if fact P is true now, it will remain true until noticed
otherwise." Most of the issues concerning this fall outside the
range of this paper, as this system only knows about time
intervals. However, a simple trick using this representation
makes inferences of the above form easy to implement.

Typically, when a new fact is learned, its exact extent in
time is not known. For instance, when I parked by car in the
parking lot this morning I knew its location. Sitting at my
desk now, I assume it is still there, though I have no proof of
that fact. In general, I assume it will remain where it is until I
pick it up. Thus, although I do not know the extent of the
interval in which my car is parked, I want to be able to
assume that this fact holds later in the day. The temporal
representation is already based on the observation that most
time intervals do not have precisely defined limits. If we

842 Communications of the ACM November 1983 Volume 26 Number 11

RESEARCH CONTRIBUTIONS

allow the user to specify that some intervals should be as-
sumed to extend as far as possible given the constraints, then
we can use such intervals to index facts that are assumed to
persist until discovered otherwise.

Thus, if we let a fact P be indexed by a persistent interval
Tp, then testing P later during an interval t will succeed (by
assumption) if it is possible that t is during Tp. Checking
whether relationships be tween intervals are possible is easy,
since the representation explicitly maintains this information.

For example, let Tp represent the interval in which my car
is in the parking lot. I know that Tp is met by Tarrive, where
Tarrive is the t ime that I arrived at school today. Then, if
N O W is represented as interval Tnow, where Tnow after
Tarrive, we can test if my car is on the parking lot. Since it is
there during Tp, we are interested in whether it is possible
that Tnow is during Tp. The known constraints allow us to
infer the following:

Tp met by Tarr ive , Ta r r ive before T n o w

= > Tp - - (< odim)--~ T n o w

Thus it is possible that Tnow is during Tp, since it is possible
that Tp contains ("di") Tnow. So the test succeeds.

Of course, if it is later learned that the car was found to be
missing during time interval Tmiss, then Tp is constrained to
be before Tmiss (even though it is still persistent). If Tnow is
then after or during Tmiss, then it is not possible any longer
that Tnow is during Tp.

Managing a system such as this is a difficult problem that
requires some form of truth maintenance (e.g., see [6]). These
issues, however, are independent of the temporal representa-
tion. All that is shown here is that the necessary temporal
calculations are easily done within this framework.

An interesting technique suggested by the above may sim-
plify much of the computation required for truth mainte-
nance for this type of assumption. In particular, let us assume
that P holds during interval Tp, where Tp is a persistent
interval. Furthermore, assume that for any time, P implies Q.
Then if we test P at t ime t, and find it is true by assumption,
so we can infer Q during t ime t. However, if we index Q by
Tp rather than by t, then we still can use the fact that Q is
true during t (by assumption), but if we ever discover further
constraints on Tp that then eliminate the possibility that t is
during Tp, then both P and Q will cease to be true (by
assumption) during t. Thus, by indexing all the consequences
of P by the same interval, Tp, we can revise our beliefs about
P and all its consequences simply by adding constraints about
Tp. While this idea obviously requires further investigation, it
appears that it may allow a large class of assumption-based
belief revision to be performed easily.

8. SUMMARY
We have described a system for reasoning about temporal
intervals that is both expressive and computationally effec-
tive. The representation captures the temporal hierarchy im-
plicit in many domains by using a hierarchy of reference
intervals, which precisely control the amount of deduction
performed automatically by the system. This approach is par-

tially useful in domains where temporal information is impre-
cise and relative, and techniques such as dating are not possi-
ble.

Aclmowledgments . Many people have provided significant
help during the design and development of this work. In
particular, I would like to thank Marc Vilain and Henry
Kautz for work on developing and extending the system.
I have also received many valuable criticisms from Alan
Frisch, Pat Hayes, Hans Koomen, Drew McDermott, Candy
Sidner, and the referees. Finally, I would like to thank Peggy
Meeker for preparing the manuscript, and Irene Allen and
Henry Kautz for the valuable editorial criticism on the final
draft.

REFERENCES
1. Allen, J. F., Frisch, A. M., and Litman, D. J. ARGOT: The Rochester

dialogue system, Proc. Nat. Conf. on Artificial Intelligence, AAAI 82,
Pittsburgh, Pa., Aug. 1982.

2. Allen, J. F., and Kautz, H. A. "A model of naive temporal reasoning,"
to appear in J. R. Hobbs and R. Moore (Ed}., Contributions in Artificial
Intelligence, Vol. 1, Ablex Pub. Co., Norwood, N.J., 1983.

3. Allen, J. F., and Koomen, l- A. Planning using a temporal world
model. Submitted to 8th Int. Joint Conf. Artificial Intelligence, Aug.
1983.

4. Bruce, B. C. A model for temporal references and its application in a
question answering program. Artificial Intelligence 3 (1972), 1-25.

5. Bubenko, J. A., Jr. Information modeling in the context of system
development. Proc. IFIP Congress 80, Oct. 1980, North-Holland, Am-
sterdam.

6. Doyle, J. A truth maintenance system. Artificial Intelligence 12, 3,
(Nov. 1979), 231-272.

7. Fikes, R. E., and Nilsson, N. J. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence 2,
(1971), 189-205.

8. Foderaro, J. K. The FRANZ LISP Manual. Dept. of Computer Science,
U. of California, Berkeley, 1980.

9. Freuder, E. C. A sufficient condition for backtrack-flee search. J.
ACM 29, 1 (Jan. 1982), 24-32.

10. Hayes, P. J. The Naive Physics manifesto. In Expert Systems, D. Mi-
chie (Ed.), Edinburgh U. Press, 1979.

11. Hayes, P. J. Naive Physics I: Ontology for liquids. Working Paper 63,
lnstitut pour les Etudes Semantiques et Cognitives, Geneva, 1978.

12. Hendrix, G. G. Modeling simultaneous actions and continuous proc-
esses, Artificial Intelligence 4, 3 (1973), 145-180.

13. Kahn, K. M., and Gorry, A. G. Mechanizing temporal knowledge.
Artificial Intelligence 9, 2 (1977). 87-108.

14. McCarthy, J., and Hayes, P. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence 4, Edinburgh
U. Press, 1969.

15. McDermott, D. A temporal logic for reasoning about processes and
plans. Cognitive Science 6, (1982), 101-155.

16. Rescher, N., and Urquhart, A. Temporal Logic. Springer-Verlag, New
York, 1971.

17. Sacerdoti, E. D. A Structure for Plans and Behavior. Elsevier North-
Holland, New York, 1977.

18. Vilain, M. A system for reasoning about time. Proc. AAAI 82, Pitts-
burgh, Pa., Aug. 1982.

CR Categories and Subject Descriptors: 1.2.4 [Knowledge Representa-
tion Formalisms and Methods]: Representations--time, temporal repre-
sentation; 1.2.3 [Deduction and Theorem Proving]: Deduction--constraint
propagation, temporal reasoning; H.3.3 [Information Search and Re-
trieval]: Clustering, Retrieval Methods

General Terms: Algorithms
Additional Key Words and Phrases: temporal interval, interval rea-

soning, interval representation.

Received 12/81; revised 3/83: accepted 5/83

November1983 Volume26 Number11 Communications of the ACM 843

