
Reducing Failure Rates of Robotic Systems though
Inferred Invariants Monitoring

Hengle Jiang, Sebastian Elbaum and Carrick Detweiler

Abstract— System monitoring can help to detect abnormal-
ities and avoid failures. Crafting monitors for today’s robotic
systems, however, can be very difficult due to the systems’
inherent complexity. In this work we address this challenge
through an approach that automatically infers system invariants
and synthesizes those invariants into monitors. The approach
is novel in that it derives invariants by observing the messages
passed between system nodes and the invariants types are
tailored to match the spatial, temporal, and operational at-
tributes of robotic systems. Further, the generated monitor can
be seamlessly integrated into systems built on top of publish-
subscribe architectures. An application of the technique on a
system consisting of a unmanned aerial vehicle (UAV) landing
on a moving platform shows that it can significantly reduce the
number of crashes in unexpected landing scenarios.

I. INTRODUCTION

Monitoring a system for anomalies is a common approach
to detect conditions that may lead to failures and to take
corrective actions. Such monitors must be carefully crafted
by engineers with the domain knowledge to understand what
could constitute abnormal behavior. This process becomes
increasingly challenging as the system and its operating
scenarios increase in complexity.

Consider, for example, the scenario illustrated in Fig-
ure 1 where a small unmanned aerial vehicle (UAV) is
autonomously following and attempting to land on a moving
platform whose location is continuously fed to the UAV. A
typical landing test consists of the UAV starting a few meters
away from the platform, finding and following the moving
platform, and then initiating the landing sequence. Using
a standard message passing system such as ROS (Robot
Operating System) [5], this system contains over thirty nodes
that communicate through dozens of message channels.

An engineer developing a monitor to detect anomalies for
this kind of system is likely to focus on a small subset of the
variables and relationships between variables. For example,
a monitor crafted for this system would likely check whether
the positions of the UAV and the platform are aligned when
landing is initiated, and the speed of the platform is less than
a safe maximum. There are, however, many other aspects
of the system worth monitoring that are more subtle and
may not be considered by the engineer given the number
of variables and relationships involved. For example, it may
help to ensure that the platform is horizontal and not rotating
when landing, the UAV’s angles are not greater than a

All authors are with the NIMBUS Lab in the Department of Computer
Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE
68588, USA. {hjiang, elbaum, carrick}@cse.unl.edu
This work was partially supported by NSF CNS-#1217400 and
AFOSR #FA9550-10-1-0406.

Fig. 1: UAV attempting to land on moving platform.

multiple of the UAV’s commanded velocity, there is only
one landing platform reporting its location, and the platform
is unoccupied and able to support the weight of the UAV.

It is unlikely that the system engineer will consider all
possible variables and relationships. To alleviate this chal-
lenge, we propose an approach to automate the synthesis of
monitors from the traces of robotic systems. The approach
is inspired by existing software engineering approaches for
automated invariant inference [7]. The core idea of this type
of approach is to infer system invariants from traces collected
during system execution, iteratively instantiating potential
invariants from a set of template invariants utilizing the trace
values, and dropping or refining the ones that are falsified by
other trace values. For example, given a template invariant
varX ≥ constant and a trace of six variable-value pairs
collected from time t1 to time t6, tr = {t1 : a = 1, t2 :
b = 3, t3 : a = 1, t4 : a = 2, t5 : a = 1, t6 : a = −1}, the
approach would instantiate the invariant template as a ≥ 1
after reading the value of a at t1 and further support it until
t6 when value a = −1 is observed and it becomes necessary
to refine the invariant to a ≥ −1; for variable b an invariant
may not be reported as there may not be enough values to
support that instantiation. Given a set of traces, the inferred
invariants provide a characterization of the behavior of the
system as exhibited in those traces.

Existing techniques to automatically infer invariants have
been shown useful for generating generic invariants like the
one illustrated above to act primarily as a function’s pre and
post conditions. The application of these techniques to large
distributed robotic systems, however, has been limited. We
conjecture that this is due to the focus on the generation
of low level invariants which is impractical in these large
systems, the lack of domain-specific invariants that capture

the temporal and spatial aspects of robotic systems, and the
lack of tools to seamlessly integrate such approaches into the
development process and common toolsets.

Through this work we aim to make automated invariant
inference techniques amenable to robotic systems. First, we
operate at the granularity of messages commonly used by
robotic systems operating under a publish and subscribe
architecture. This reduces the overhead typically suffered
by similar approaches and it lets us infer properties related
not just to program states but also to message sequences,
which are critical to most robotic systems. Second, we have
developed invariant templates that account for properties that
are deemed important in the context of robotic systems such
as those characterizing the relationship between variables
that have a continuous distribution such as sensors values,
those including a temporal component to capture the deriva-
tives of raw variable values, and those that can differentiate
among system operating modes. Third, we have implemented
a version of the approach that automatically synthesizes a
monitor as a node that can be seamlessly integrated into
existing ROS system. The monitor can be tailored to trigger
actions or send messages when an invariant is violated.

In the context of the previous scenario, our approach
automatically synthesized a monitor that checks 1059 in-
variants over 56 system message variables, and includes
the subtle ones we mentioned earlier. The study illustrates
the approach’s potential to increase the system robustness
in the presence of new landing scenarios by more than a
threefold by preventing landing under conditions that violate
an inferred invariant. The contributions of this work are:
• Extension of automated induction techniques that derive

properties for robotic systems from execution traces
• Design and implementation of a ROS toolset that can

derive system properties and synthesize a monitor to
detect property violations and initiate recovery actions
on any ROS system with minimal user effort

• A case study illustrating the potential of the techniques
and toolset in reducing the failure probability of a UAV
landing on a moving platform.

II. APPROACH

A. Overview S	 S’	

TS	

Traces	

Invariants	

Instrument	

Execute	

Infer	

Cfg	

Synthesize	

S+Monitor	 Cfg’	

Templates	

Fig. 2: Approach Overview.

The goal of our approach
is to enable the automatic
generation of system moni-
tors that can detect anoma-
lous behavior and launch
counter-measures. The type
of system we target is a
robotic system made of dis-
tributed nodes that sense and
actuate, and that communi-
cate through some form of
message passing scheme. As
mentioned, our work was
motivated and implemented

in the context of ROS, but the approach is generalizable to
other similar message passing infrastructures (e.g., LCM [3],
Microsoft Robotics Developer Studio [4] , CLARAty [1]).

Figure 2 provides an overview of the approach, which is
similar to what is currently performed by existing dynamic
invariant inference frameworks [7]–[9], [13]; we have high-
lighted the differences by bolding certain components’ labels.

System S and an optional configuration file Cfg serve as
the only inputs to the approach. S is instrumented to capture
the messages passed between the nodes in the system,
constituting system S′. When S′ is executed with the training
set TS, a set of |TS| traces Traces is generated, where
each trace will contain a sequence of variable-value pairs
found in the messages. The approach will then attempt to
instantiate the predefined invariant templates based on the
information found in the traces and in the configuration
files. Each instantiated invariant is a boolean expression that
characterizes the variables values observed in the Traces.
Last, the invariants generated are synthesized into a monitor
that can be incorporated as a node into the system S. Our
main contributions are in: the instrumentation to capture
messages passed between system nodes; the inclusion of
information from configuration deployment files; a class of
invariant templates that better fit robotic systems; and in the
build process to incorporate the invariants into the target
system as a monitoring component. We now describe some
of these phases in more detail.

B. Richer Sources of Information

Our approach targets two unique sources of information
commonly used in robotic systems. First, it targets the
messages being passed between the system components.
Although traditional dynamic invariant inference approaches
commonly capture variable-value pairs at the entry and exit
of functions, such an approach would not scale to large
robotic systems. Instead, we shifted our focus to the struc-
tured messages that are sent between the nodes of robotic
systems. We observed that these higher level messages cause
less overhead while still providing a rich enough data set
from which to generate invariants on a per-node level.

Figure 3 shows a subset of the small UAV and platform
system described before where each circle represents a
node, and each line represents a channel or topic where
messages are published. So, for example, given nodes
/a/ctrl state machine and /a/car ctrl, a message be-
tween those nodes on topic /a/subject ctrl state, may con-
sist of timestamp 123287 : {state : 8, user data : 0}. Note
that a node may consume and publish messages on different
topics. Furthermore, many messages are published during an
execution. For our system, in a typical execution scenario,
there are hundreds of thousands of messages published.

Now given a trace of messages, we cluster the mes-
sages consumed and published by each node. Given such
cluster, we pair the messages published by a node, with
the messages previously consumed by a node. The idea
is that the entry values in the messages consumed by a
node are likely to define its behavior and affect its outputs

Fig. 3: Message flow across system nodes.

as evident in the published messages. Figure 4 presents
a partial message trace at the top (timestamps have been
dropped to save space), and the pairings at the bottom for
node /a/car ctrl. In each pairing, a published message
on topic /a/cmd subject ctrl state is paired with the last
values consumed by the node through the several topics
including /a/subject ctrl state and /a/car pose. Note that
not all messages are published at the same rate, so each
pairing includes the published message with the latest value
available for all the incoming messages. The approach can
be parameterized to relate published values to a range of
previously consumed values, increasing precision but also
inference cost in the next stage. In the end, these pairing
along with their time markings are going to be the key input
to the inference engine to identify relationships between the
messages incoming to and outgoing from a node.

The second unique source of information that our approach
can leverage are the deployment configuration files (Cfg in
Figure 2, launch files in ROS) often available in these sys-

Fig. 4: Sample trace (top) and message pairings (bottom).

tems. These files allow system operators to better configure
their systems to match a deployment context. For example,
our sample system can operate multiple UAVs simultane-
ously and change the source of location information by
simply tweaking configuration parameters without changing
or rebuilding the source code. The configuration parameters
also serve as input to the inference engine since the messages
published by nodes may be conditioned by them.

C. Invariant Template Family

Techniques that infer invariants from program execution
often target a set of standard invariants such as the memory
locations read or written at marked program points [13] or
the ranges of values observed for a variable at the entry or
exit points of a function [2]. Identifying richer invariants,
like the ones we aim to capture in robotic systems, requires
the specification of richer invariant templates. Through this
work we introduce three new types of invariant templates that
reflect the spatial and temporal nature of robotics systems.

First, we introduce invariant templates that incorporate
time as a central component of invariants. The simplest
of these templates serves to characterize the messages
average frequency and variance. For average, this may
takes the form of constantLower <

∑n
i=1(msgtimei −

msgtimei−1)/n < constantUpper. For our sample system
this type of invariant is useful to detect, for example,
stale location data that may direct the UAV to the wrong
location. A more complex invariant template involving time
aims to capture the derivative of continuous raw variables.
For example, the derivatives of distance traveled over time
may render velocity or acceleration invariants. This type of
invariant takes the form of constantLower < dV arX/dt <
constantUpper where V arX is a vector of variable values.
In our scenario an invariant of this type is dLocationUAV =
d[loci, loci+1, ..., locn]/dt < maxUAV V elocity. To infer
such invariants, the traces are enriched with timing data that
are specially labeled so that the inference engine can identify
them and associate them with all the other potential variables.

Second, we introduce invariant templates that define re-
lationships between two variables1 that can be characterize
through a polygon. This invariant template takes the form
of

⋃n
i (aiX + biY + c[>= | <=]0) that defines a polygon

of n sides. Every time a new variable-value is read, it is
checked against the polygon. If it resides inside the polygon,
it is ignored. If it resides outside the polygon, the polygon
is relaxed by computing the convex hull that includes the
new observation. This type of invariants are valuable to
capture physical space bounds. For example, if our system
operating scenario was bounded by the dimensions of a room
and an attached hallway, this invariant template would be
instantiated with at most eight sides. This type of invariant
can also characterize relationships between variables that are
hard to anticipate because their lack of linearity. Take the

1We note that we did explore invariant templates with more than two
variables and although some of the instantiated invariants were useful,
we found that the cost of invariant generation was exponential and hence
prohibitive unless it was focused on a small set of nodes.

UAV acceleration and its pitch and roll. Ideally, these are
linearly correlated. However, wind velocity may introduce
variation in these relationships that can only be captured
through the richer invariants like the ones we are proposing.

Third, we introduce the notion of conditional state in-
variants, that is, invariants that can only hold under certain
system states that can be identified as such. For example,
in our system the invariants that hold when the UAV is on
the ground versus when it is flying are quite different. This
partition of the space of system behavior helps to generate
more and more precise invariants, and it also helps to make
the inference process more efficient. Attempting to produce
invariants without differentiating such states would result in
a smaller set of more general invariants, but it would miss
many valuable invariants that only apply to one system state.
For example, the critical invariants that characterize how the
system should behave when attempting to land on the moving
platform (e.g. the UAV and platform X and Y coordinates
should be within a certain threshold) would be dropped as
they would not hold when the UAV is pursuing the landing
platform. To infer such invariants, we use the composition
of existing invariants templates. First we identify variables
that have a small discrete set of values; this helps us identify
variables such as UAVmodes which has a range from 1
to 9 indicating whether the UAV is taking off, hovering,
translating, landing, etc. Second, we partition the traces
into sub-traces according to those discrete values. Third,
we perform inference on the sub-traces independently and
incorporate the learned invariants and a predicate on the
discrete variable as part of the monitor.

At the end of the inference process, invariants that are
statically justified (as per the number of observations and
their variance) are reported.

D. Monitor Synthesis and Implementation

Given a set of generated Invariants consisting of boolean
expressions over messages of type Topic, the synthesis
process consists of the creation of a node that consumes
messages of type Topic and checks whether those messages
violate any of the Invariants. The monitor also encodes
what actions to take if an invariant is violated. The default
action is to raise a warning, but the monitor can also be
configured to drop messages (in this case the messages
are not just consumed by the monitor but intercepted and
then re-published if they do not violate an invariant) or
generate new messages. In the case of our sample system,
the monitor re-launches the UAV landing sequence when an
invariant is violated. We note that the synthesis produces
a monitor that can work directly with the original system
S. The difference resides in the configuration file Cfg′

which remaps and extends how messages are passed and
incorporates the monitor to process those messages.

We have implemented our approach to work with the
Robotic Operating System (ROS). We leverage ROS’ ca-
pabilities to capture traces in the form of “rosbags” that
we post-process to cluster messages and add the necessary
information to compute the new invariants. These traces

Fig. 5: Sample moncfg file to configure the approach
are then feed into the invariant inference engine. The only
required user input is a monitor configuration file which
follows a traditional launch file structure, and is used to
specify the target system and parameters. With that, our
approach can infer the invariants, synthesize the monitor,
and build a new configuration file CFG′ to use the system
with the monitor incorporated. The monitor configuration
file can specify how to constrain the nodes or messages for
which invariants are generated, and to specify the actions
to take in case an invariant is violated. Figure 5 shows a
sample monitor configuration file where the target is the
topic /a/state, the traces will be located in bags, the launch
file is iRobot.launch, and the monitor will publish on topic
/a/cmd when any coming messages violate any invariants.
Our inference process is built on top of the Daikon [2], [8]
inference engine. We incorporated the invariants described in
Section II-C by post processing the collected system traces
and by modifying the Daikon engine. We also built a post-
processor of the Daikon output so that it can be synthesized
into a monitor.

III. ASSESSMENT

The invariant monitoring tools and techniques developed
in this paper are general purpose and can immediately
be applied to any ROS system. To test our approach, we
implemented it on a system designed to land a UAV on
a moving platform. The target system was introduced in
Figure 1 and has three main components: the UAV (As-
cending Technologies Hummingbird), the moving platform
(iRobot iCreate with a mounted landing platform of 50cm
x 50cm, following its standard “vacuum” motion pattern),
and a control system that tracks the iRobot and directs the
UAV in its pursuit. For ease of evaluation we run the UAV
and iCreate in a Vicon motion capture room and provide the
UAV with the position of the iCreate, although it could work
with a visual servoing system as well.

A. Training and Evaluation

The training process was conducted under what we de-
termined were normal operating conditions. The UAV can
takeoff from anywhere in the room, the iRobot wanders in
the room, and the control system drives the UAV towards the
iRobot. The UAV attempts to land on the iRobot when it us
within 0.15 meters of it for 1.5 seconds. For each landing, the
system generated a bag file containing a record of generated
messages. To train the system, we collected 83 successful
runs. We consider a run successful when the UAV lands on
the iRobot, turns off its motors, and remains on the platform
for 5 seconds. We collected this number of runs to mitigate
the risk of capturing coincidental invariants.

Among all the messages in the collected bags, we chose
those published on four topics containing a total of 56
variables for invariant detection and monitoring. Three topics
contained position and attitude information: iRobot, UAV
and task (all doubles). The fourth message had the state
information of the controlling system: state (unsigned int).
Our tool processes the bag files, clustering the messages
around nodes, instantiating additional variable-value pairs
obtained from the launch files or required by the richer invari-
ant types (e.g., system modes, time stamps), and packaging
the traces as required by Daikon. In the end, the trace file
for training contains over nine million variable-value pairs.

Next, the processed data traces are fed to the extended
Daikon inference engine for analysis. The inference process
took 6 minutes 20 seconds to generate 1059 invariants from
these traces (this process is known to be polynomial with
respect to the number of variables [14] so identifying what
nodes and topics to monitor, and techniques for reducing
the number of invariants to monitor is critical – we further
discuss this in Section V). With these invariants and the
actions defined in the monitor configuration file, the tool
generates the monitor node and a revised launch file so
that the monitor can run alongside the original ROS system
without the need for recompilation.

We evaluated the effectiveness of the invariant monitor
on 7 different scenarios (shown in Table I). These scenarios
were developed to test the performance of the system with
and without the monitor under normal conditions (similar to
the training set) and under stress. The stress testing scenarios
contain unexpected events that the system developer may not
anticipate, but that the monitor is able to detect. For the “s3
occupied landing” and the “s7 false airport” scenarios we
consider landing as failure and canceling landing as success,
while in the other scenarios we set the same criteria for
success as set for the training process.

ID Name Description
s1 Normal Same as training conditions. Succeeds on landing.
s2 Wind

Blowing
8-38 KPH wind. Succeeds on landing.

s3 Occupied
Landing

Platform is occupied by another object.
Succeeds if it avoids landing.

s4 Fragile
Platform

The platform will tip if UAV lands near the edge.
Succeeds on landing.

s5 Slowed
Link

iRobot position information given at a slower rate.
Succeeds on landing.

s6 Stealing
Vehicle

Fake iRobot positions given attempting to “steal”
the vehicle. Succeeds on landing.

s7 False
Airport

iRobot position is incorrect and no vehicle was
located there. Succeeds if it avoids landing.

TABLE I: Evaluation Scenarios.

B. Results

For each of the scenarios we performed 5 trials with and
without the monitor. Table II summarizes the results. Over
all the test scenarios, the base system without the monitor
succeeded 23.8% of the time, while with the monitor it
succeeded 89.4% of the time. Figure 6 plots the success rates
for each scenario. It is clear that the system with monitor

Fig. 6: Landing success rate.

Fig. 7: Time to land (successful scenarios without a monitor).

worked much more safely that it did without monitor, as it
succeeded with a much higher rate for all the scenarios.

For the successes, the base “Normal” system took an
average of 35.5 seconds to succeed, while the system with
the monitor took 62.8 seconds to succeed. Figure 7 shows
a box plot depicting the average times with and without the
monitor and the variance in these measurements (only for the
scenarios in which the system without monitor successfully
landed). Without the monitor, the average time has low
variance within each scenario and over all scenarios. With
the monitor there is a high variance in the time to success.
This is because the monitor tends to be conservative. It only
allows the UAV to land when all the synthesized invariants
are satisfied. In the best case this will happen on the first
attempted landing, but in most cases it requires a number of
attempts. Also, to monitor the invariants the monitor adds,
on average, a 35ms latency to the published messages.

C. Detailed Analysis

We now look at the details for each of the scenarios.
Because of space constraints we first describe the “normal”,
“wind blowing”, and “fragile platform” in more detail since
they let us introduce different types of invariants and con-
texts, and then briefly discuss the other scenarios.

In the “normal” scenario, most failures were caused by
the iRobot’s suddenly changing direction while the UAV
was trying to land. Figure 8 shows the successful and failed
landings with and without the monitor in the test area where
the iRobot was operating. The thicker-blue walls indicate the
boundary of the area. The iRobot will typically drastically
change directions when it hits a wall, although it occasionally
chooses to follow the wall. That is why most of the crashes
without monitor are located towards the borders. The single

Without Monitor With Monitor
Scenario % Avg. Time Invariant Broken % Avg. Time Reinitiated

Successes to Land During Failure Successes to Land Landings
S1 Normal 35 35.5 polygon(UAV.x, iRobot.x)

polygon(UAV.y, iRobot.y)
95 62.8 1.7

S2 Wind blowing 0 42.25 polygon(UAV.x, iRobot.x)
polygon(UAV.y, iRobot.y)
polygon(UAV IMU.roll, UAV IMU.acc y)
polygon(UAV IMU.nick, UAV IMU.acc x)

100 141.8 4.8

S3 Occupied landing 0 - UAV.z ≤ 0.371295 100
S4 Fragile platform 20 39 −0.0593147 ≤ UAV.rx ≤ 0.145754

−0.106682 ≤ UAV.ry ≤ 0.0836237
80 145.6 16.2

S5 Slowed Link 20 42 interval state iRobot ≤ 2.04876 80 106.4 6
S6 Steal vehicle 20 41.6 −0.457771 ≤ rate iRobot.x ≤ 1.01126

−0.532218 ≤ rate iRobot.y ≤ 0.962376
80 147.6

S7 False airport 0 - UAV.z ≥ 0.245868 100
Summary 23.8% - - 89.4% - -

TABLE II: Summary of results across all scenarios.

Fig. 8: Outcomes under normal scenario.

Fig. 9: Normal scenario without monitor.

Fig. 10: Normal scenario with monitor.

failure with monitor occurred as the UAV landed on the
platform but slid off it because of its incoming speed.
When the iRobot quickly changes direction, the monitor
detects violations of one of the inferred polygon invariants
which characterize the relations between UAV and iRobot
positions, speeds, and rotations during the landing process.
Figure 9 shows the y axis polygon invariant between the UAV
and iRobot without the monitor running. Initially, when the
UAV takes off it is outside of this constraint. It then moves
over the iRobot and initiates landing. As seen in the figure, it
moves out of the polygon invariant while still trying to land
and crashes. In contrast, Figure 10 shows the same scenario
with the UAV and iRobot position with the monitor enabled.
In this case, whenever the constraints are violated the landing
is aborted. Eventually, the UAV is able to successfully land
while staying within these constraints.

In the “wind blowing” scenario, the strong wind breaks
many invariants derived from the normal setup. Neither the
system, nor the monitor were designed to explicitly consider
wind. However, the monitor is able to detect violations of
the UAV and iRobot positions and the roll and acceleration
of the vehicle, as described in Table II. Figure 11 shows
the locations where landings occurred. None of the landings
occurred within 2 meters of the blower where the wind
speed was upwards of 33 KPH, which prevented the landing
sequence. Even away from the fan, the system without
the monitor was unable to successfully land. The system
with the monitor was able to detect constraint violations to
prevent landing when it was unsafe and was able to land
100%. Figures 12 and 13 show two of the trials with and
without monitor for the polygon invariant involving the UAV
pitch and acceleration on the x-axis. In Figure 12 the UAV
leaves the polygon and crashes almost immediately. In Figure
13, however, the violation of the invariant while using the
monitor leads to a landing reinitialization, avoiding a crash
(other monitored invariants were violated within the polygon
leading to other landing reinitialization as well).

In the “fragile platform” scenario (see Figure 14), the
landing platform would tilt if the UAV did not land in
the upper right quadrant as shown in Figure 14. The
monitor detected the error when checking the violation of

Fig. 11: Outcome under wind blowing scenario.

Fig. 12: Wind blowing scenario without monitor.

Fig. 13: Wind blowing scenario with monitor.

the invariants on iRobot.rx and iRobot.ry which indicate the
horizontal angle of the platform. Figure 16 shows one of the
angles without the monitor. The straight lines indicate the
bounding constraint inferred by the platform. As shown by
the red line, the UAV started to land on the platform, but
then the platform tilted and the UAV fell off and crashed.
Figure 17 shows the same setup with the monitor. In this
case, the UAV initialized landings three times, but in the
first two the landing was canceled when the constraints were
violated. Overall with the monitor the UAV was able to
successfully land 80% of the time, while without the monitor
it was only successful 20% of the time.

In the “occupied landing” scenario, the monitor detected
that the platform was occupied since it could not decrease
its height as it did in the normal case. If it detected this,
it canceled the landing, which we consider a success. In
the “slow link” scenario, the message rate from the iRobot
position was periodically slowed down to 0.5Hz. to mimic
a fault positioning sensor or a radio link that drops packets.
The monitor detected this abnormal situation by the invariant
on the interval between messages and interrupted the landing
when the link was not reliable to avoid crashes. In the

Fig. 14: UAV attempts to land on fragile platform.

Fig. 15: Outcome under fragile platform scenario.

Fig. 16: Fragile platform scenario without monitor.

Fig. 17: Fragile platform scenario with monitor.

“stealing vehicle” scenario, fake iRobot positions were also
given to try to get the vehicle to land in another location
when iRobot was moving in the upper half part of the area.
The monitor detected this anomaly through a violation of
the invariant on the iRobot rate of change in position. In
this case when there were the positions of iRobot changed
two quickly, it kept flying without landing on either false or
right platform. When iRobot was moving in the lower half
part of cage it would try to land, which we considered a
success. In the “false airport” scenario there was no iRobot,
rather a false location was published. If the false location

was outside the region where the UAV had previously seen
the iRobot, then the UAV refused to go to that location and
filtered out these false messages. If the false location was
in the correct range, the UAV attempted to land. However,
the monitor could tell the difference of the height between
the false and correct platforms, so the UAV with the monitor
would not land on the false airport.

IV. RELATED WORK

Our work was inspired in part by the evolution and
maturity gained by techniques and tools available to infer
likely program invariants. Our work builds specifically on
Daikon [7], [8], one of the pioneer approaches with probably
the most sophisticated toolset openly available [2]. Still,
several other complementary efforts have emerged in the
last few years, ranging from those attempting to integrate
the inference and monitoring phases [13] to infer richer
temporal properties such as event precedence [9], [16], and
to use more static analysis such as symbolic execution to
infer more general invariants that may hold for all scenarios
or for certain program paths [6]. Our work is different from
these efforts in its focus on messages, in the more domain-
specific set of invariants we are trying to capture, and in the
implementation of the toolset in the contexts of ROS so that
invariants can not only be inferred but also included in a
system to detect anomalies and take corrective measures.

In the context of robotic systems, monitoring for error
detection is a well known area [15]. The potential for
missing information, unreliable and imprecise sensors, and
the stochastic nature of the operating environment often
makes monitors a necessity. Existing efforts can be grouped
in analytical or data-driven, based on the system model used
to detect anomalies. An analytical model derives properties
from the physical world, while a data driven model uses input
data to derive properties, usually of the statistical type based
on the input. Just in the context of quad rotors similar to
the ones we used in our study there have been several recent
efforts that attempt to detect anomalies using data driven
approaches [12] and more analytical ones combined with
advanced machine learning approaches [11]. And even after
an anomaly is detected existing efforts have been designed
to perform diagnosis and remediation [10] based on models
defined by domain experts. Our approach is complementary
to these approaches, and unique in that it can generate
more general invariants that were not considered by domain
experts and not defined by simple statistics, and that may be
relevant to many robotic systems as they are instantiated by
a training set. Furthermore, the implementation within ROS
makes it directly applicable to a large set of existing systems.

V. CONCLUSION AND FUTURE WORK

We have introduced a general approach for automated
invariant inference and monitoring, and implemented it in
the context of ROS so that any system implemented with
this operating system can leverage it with minimal effort.
The approach was able to automatically infer rich invariants
for a robotic system based on a training set, and it was able

to detect the violation of those invariants and avoid failures
under various scenarios of enough complexity to illustrate
the potential of the approach.

Besides more extensive empirical assessment of the ap-
proach we see several technical avenues for future work.
First, we would like to study how to increase the scalability
of the approach. For invariant generation, we are investi-
gating the application of filters based on the variance and
pedigree of a variable as well as the automatic identification
of redundant messages. Within invariants monitoring, we
are investigating sampling schemes that can reduce the
monitoring cost while minimizing information loss. As part
of this effort we are studying how to incorporate training
data from failing scenarios to further prioritize the invariants
to monitor. Second, the approach generality and power
could be increased by moving from invariants consisting
of boolean expressions to probabilistic expressions, and by
incorporating temporal operators, which may help to capture
the uncertainty present in robotic systems. Last, the type of
actions we support when an invariant is violated could be
enriched to support, for example, message rectification so
that minimally reformulated messages can be published but
still remain within the system invariants.

REFERENCES

[1] Claraty robotic software. https://claraty.jpl.nasa.gov.
[2] The daikon invariant detector. http://groups.csail.mit.edu/pag/daikon/.
[3] Lightweight communications and marshalling.

https://code.google.com/p/lcm/.
[4] Microsoft robotics. http://msdn.microsoft.com/en-us/robotics/.
[5] Ros. http://www.ros.org.
[6] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: dynamic

symbolic execution for invariant inference. In ICSE, pages 281–290,
2008.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
ICSE, pages 213–224, 1999.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. In Science of Computer Programming, pages 35–45,
2006.

[9] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal
properties from dynamic traces. In FSE, pages 339–349, 2008.

[10] F. W. Gerald Steinbauer, Martin Morth. Real-time diagnosis and repair
of faults of robot control software. In RoboCup, pages 13–23, 2005.

[11] J. H. Gillula and C. J. Tomlin. Reducing conservativeness in safety
guarantees by learning disturbances online: Iterated guaranteed safe
online learning. In RSS, 2012.

[12] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann. Online
data-driven fault detection for robotic systems. In IROS, pages 3011–
3016, 2011.

[13] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In ICSE, pages 291–301, 2002.

[14] J. H. Perkins and M. D. Ernst. Efficient incremental algorithms
for dynamic detection of likely invariants. In In Proceedings of
the ACM SIGSOFT 12th Symposium on the Foundations of Software
Engineering, pages 23–32, 2004.

[15] O. Pettersson. Execution monitoring in robotics: A survey. Robotics
and Autonomous Systems, 53:73–88, 2005.

[16] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:
mining temporal API rules from imperfect traces. In ICSE, pages
282–291, 2006.

