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Abstract—This paper reconsiders the problem of robust net-
work design form a different point of view using the concept of
resistance distance from network science. It has been shown that
some important network performance metrics, such as average
utilization in a communication network or total power dissipation
in an electrical grid, can be expressed in terms of linear
combination of point-to-point resistance distances of a graph.
In this paper we choose to have a weighted linear combination
of resistance distances, referred to as weighted network criticality
(WNC), as the objective and we investigate the vulnerability of
different network types. In particular, We formulate a min-max
convex optimization problem to design k-robust networks and we
provide extension to account for joint optimization of resources
and flows. We study the solution of the optimization problem in
two different networks. First we consider RocketFuel topologies
and Abilene as representatives for service provider networks, and
we show gains that can be achieved by optimizing link capacities
and flows in RocketFuel topologies and Abilene. In the second
experience, we show the application of the proposed optimization
problem in designing robust electrical grids.

I. INTRODUCTION

Robustness and vulnerability analysis are two related prob-
lems. In robustness theory, we study the effect of environmen-
tal variations in the behavior of a network and we try to design
a network in such a way to be insensitive to the environmental
changes to the extent possible. In vulnerability analysis we are
concerned with bottleneck points of a network. We perturb
either different parts of the network or various environmental
parameters, and we measure the performance degradation due
to the perturbation. In this sense, a more robust network is less
vulnerable, since it is less sensitive to the unpredicted changes
in network parameters.

It has been already shown that resistance distance [1] can
quantify a number of important properties and performance
metrics in a network. Physical and electrical interpretations
of resistance distance are discussed in [1], [2] and a nice
summary of the electrical interpretations of resistance distance
is available in [3]. Some of the applications and interpretations
of average resistance distance (referred to as network criti-
cality) are discussed in [4], [5]. A common message which
is implied by previous research on the concept of resistance
distance is the fact that optimizing network criticality (or a
variation of it) provides robustness. We can design robust
network topologies by minimizing network criticality (average
resistance distance). We can also develop robust network

control algorithms (such as flow assignment) by controlling
the value of network criticality.

In this paper we use a generalized form of network criti-
cality as the main objective and we discuss k-robust network
design methods, in which the goal is to keep the network
operational at the presence of up to k link failures. We use
this approach to evaluate present structure of Internet Service
Provider (ISP) networks. Moreover, we investigate the design
of robust power grids as another application of the proposed
method.

The paper is organized as follows. Section II reviews pre-
vious work on resistance distance and network criticality, and
introduces necessary notations. In section III we formulate our
k-robust optimization problem and show extensions to jointly
optimize resources and flows in a communication network.
Section IV discusses the application of our k-robust method
in studying the vulnerability of RocketFuel ISP networks. We
also discuss the design of k-robust power grids using WNC in
details. Conclusions are presented in section V.

II. RESISTANCE DISTANCE AND NETWORK CRITICALITY

The concept of resistance distance [1] is originally defined
in electrical circuits. Consider an electrical circuit with a
given topology which is modeled as a weighted undirected
graph, where the weight of each link equals the conductance
(reciprocal of the resistance) of the link. The point-to-point
resistance distance between two nodes s and d (denoted by
τsd) is equal to the equivalent resistance seen between s and
d. More precisely, if we apply a unit current source between
s and d, the resistance distance τsd equals the voltage drop
between s and d.

Later it has been shown that there is a close analogy between
the behavior of resistive electrical circuits and the theory of
random-walks in graphs [2]. While there are different ways to
describe this relationship, we choose to use a recently intro-
duced graph metric, the notion of random-walk betweenness
centrality [6], to explain how random-walks are related to the
electrical circuits. Suppose a random-walker starts wandering
around from node s and stops when first reaches at destination
node d, i.e. node d is an absorbing node. The random-walk
betweenness of node k for pair s − d, denoted by bsk(d), is
defined as the average number of times that the random-walker
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traverses node k. The total betweenness of node k is the sum
of the contributions of all possible pairs, i.e. bk =

∑
s,d bsk(d).

Now, let us define node criticality as the random-walk be-
tweenness of a node normalized by its weight value (random-
walk betweenness divided by the node weight). Likewise, we
can define link criticality as the normalized link betweenness.
Furthermore, network criticality is defined as the average of
point-to-point effective resistances. Let ηk, ηij , and τ̂ denote
the criticality of node k, the criticality of link l = (i, j), and
network criticality respectively. It has been shown that the
following equations are valid [4]:

τsd = l+ss + l+dd − 2l+sd or τsd = utsdL
+usd (1)

τsd =
bsk(d) + bdk(s)

Wk
(2)

τ̂ =
1

n(n− 1)

∑
s,d

τsd =
2

n− 1
Tr(L+) (3)

ηk =
bk

Wk
=

n(n− 1)

2
τ̂ (4)

ηij =
bij

wij
= n(n− 1)τ̂ (5)

where L+ = [lij ] is the Moore-Penrose inverse of graph
Laplacian matrix L [7], n is the number of nodes, Tr(X)

denotes trace of matrix X, and uij = [0 ... 1 ... − 1 ... 0]t (1
and −1 are in ith and jth positions respectively).

Equations (1) to (5) show the relationship between random-
walk betweenness and resistance distance. Moreover, accord-
ing to equations (4) and (5), node criticality (ηk) and link
criticality (ηij) are independent of the node/link position and
only depend on τ̂ which is a global quantity of the network.

Network criticality (τ̂) can capture the effect of topol-
ogy through the betweenness values. A higher value of the
node/link betweenness shows a higher risk (criticality) in using
the node/link. Furthermore, one can define node/link capacity
as the weight of a node/link, then the higher the weight of a
node/link, the lower the risk of using the node/link. Therefore,
according to equations (4) and (5) network criticality can
quantify the risk of using a node/link in a network which in
turn indicates the degree of robustness of the network.

Generally speaking, in a weighted graph network criticality
can be interpreted as the total resistance of a corresponding
electrical network. Consider a weighted network and build
an electrical circuit with the same graph as the original
network graph, and with link resistances equal to the reciprocal
of link weights. Network criticality is equal to the average
resistance distance seen between different pairs of nodes in the
electrical circuit representation. A high network criticality is an
indication of high resistance in the equivalent electrical circuit;
therefore, in two networks with the same number of nodes, the
one with lower network criticality is better connected, hence
better positioned to accommodate network flows.

It has been shown that τsd is a convex function of link
weights and τ̂ is a strictly convex function of link weights [4].

A. Interpretations of Network Criticality
In this section we shed more light on the importance of

network criticality in the study of communication networks

and power grids by providing some of its interpretations.
1) Average Link Betweenness Sensitivity: We are interested

in identifying situations where slight changes in the between-
ness of a link or node may cause dramatic changes in the
betweenness values elsewhere in a network. Thus a reasonable
goal in designing robust network control algorithms is to
minimize the changes in the betweenness of different links.
It has been shown that τ̂ is proportional to the average of
random-walk link betweenness sensitivities (derivative of a
link betweenness with respect to its weight) [4]:

τ̂ =
1

n(n− 1)(m− 1)

∑
(i,j)∈E

∂bij

∂wij
(6)

where m denotes the number of nodes of the graph. Equation
(6) states that minimization of network criticality results in
minimizing the average sensitivity of link betweennesses with
respect to the changes in link weights. Therefore, one needs to
control the value of τ̂ to keep the change in the average link
betweenness sensitivity below a pre-specified level. Equation
(6) also describes one advantage of having low network
criticality in the robustness enhancement of the network.
Suppose that a node is failing or becoming inaccessible so
that it is unable to route the traffic passing through it. If
we adapt the routing to minimize the criticality, the result is
to adjust the betweenness in such a way that traffic is re-
routed to other nodes instead of the impaired one and that the
resulting flows provide higher robustness against additional
unpredictable deleterious situations.

2) Average Travel Cost: Suppose that there are costs asso-
ciated with traversing links along a path and consider the effect
of network criticality on average cost incurred by a message
during its walk from source s to destination d. It is shown in
[4] that the average incurred cost is the product of network
criticality and the total cost of all link weights. Therefore,
if we set a fixed maximum budget for the cost of assigning
weights to links, then the average travel cost is minimized
when network criticality (τ̂) is minimized. In the special case
where all links have unit cost, the average travel cost is equal
to the average hop length (or average travel time). Hence τ̂

quantifies average path length.
3) Congestion: τ̂ can determine the onset of congestion in

a communication network. Let λ be the average total input rate
of the network, and let the weight of each link be the capacity
of the link. It can be shown that the maximum acceptable
value of λ before the capacity of some link in the network is
exceeded (congestion) is upper bounded by the reciprocal of
network criticality [4]. One concludes that to delay the onset
of congestion to the maximum extent possible, we need to
minimize τ̂ .

4) Average Network Utilization: Let the link weights be the
capacity of the links in the network and a traffic demand matrix
is given, then the average network utilization can be expressed
as a linear combination of point-to-point resistance distances,
i.e. V̄ =

∑
ij βijτij , where βij is a function of traffic matrix

entries [5]. Hence, optimizing network utilization is related
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to the optimization of a linear combination of point-to-point
resistance distances.

B. Power Dissipation in Electrical Grids

It can be shown that in a DC-model approximation of
a power grid, the average power dissipation of the grid is
proportional to Tr(AL+), where A is a positive semi-definite
matrix [8]. It is easy to verify that the power dissipation
can be expressed as a linear combination of point-to-point
resistance distances (similar to the case of network utilization).

All of these interpretations show that minimization of a lin-
ear combination of point-to-point resistance distances, which
will be referred to as weighted network criticality (WNC), is
the basis of optimizing many important network performance
metrics such as path cost, utilization, and power dissipation.
Hence, in the following section we investigate the properties
of such an optimization problem.

III. WEIGHTED NETWORK CRITICALITY

We consider a general weighted version of network critical-
ity (WNC) defined as follows.

τα =
∑
i,j

αijτij , ∀i, j ∈ N αij + αji ≥ 0 (7)

where N is the set of network nodes. To study the minimization
of WNC, we rewrite WNC in matrix form as follows:

τα =
∑
i,j

αijτij =
∑
ij

αiju
t
ijL

+uij = Tr(UαL
+) (8)

where Uα =
∑
ij αijUij and Uij = uiju

t
ij .

It is easy to see that the sum of the rows in Uα is zero,
and for αij + αji ≥ 0 ∀i, j ∈ N , it is a symmetric and positive
semidefinite matrix. One example of Uα for n = 3 (number of
nodes) is given in the following:

Uα =

α
′
12 + α′13 −α′12 −α′13
−α′12 α′12 + α′23 −α′23
−α′13 −α′23 α′13 + α′23


where α′ij = αij + αji.

We now consider minimization of WNC. First we show that
the minimization is viable. Using the properties of τij [4], it
is easy to verify that the partial derivative of τα with respect
to link weight wij is always non-positive and can be obtained
from the following equation.

∂τα

∂wij
= −

∥∥FαL+uij
∥∥2

where Fα is a matrix such that Uα = F tαFα. This decomposition
is always possible because Uα is a positive semidefinite matrix.

Since WNC is a convex function and its derivative with
respect to the weights is always non-positive, the minimization
of τα subject to some convex constraint set is possible.

In formulating the optimization problem, we add a maxi-
mum budget constraint to the problem. We assume that there
is a cost zij to deploy each unit of weight on link (i, j). We also
assume that there is a maximum budget of C to spend across all

network links. This constraint means that ∑(i,j)∈E wijzij ≤ C.
Now we can write our optimization problem as follows:

Minimize τα

Subject to
∑

(i,j)∈E wijzij ≤ C ,C is fixed (9)
wij ≥ 0 ∀(i, j) ∈ E

Assuming Γ = L + J
n

, and considering the fact that L =∑
i,j wijuiju

t
ij (definition of Laplacian) and L+ = Γ−1 − J

n
[9],

where J is a square n × n matrix with all entries equal to 1,
we can write the optimization problem (9) as:

Minimize Tr(UαL+) (10)
Subject to Γ =

∑
(i,j)∈E wijuiju

t
ij + J

n

L+ = Γ−1 − J
n∑

(i,j)∈E wijzij = C ,C is fixed

wij ≥ 0 ∀(i, j) ∈ E

Note that UαJ = 0, consequently Tr(UαL+) = Tr(UαΓ−1).

A. Network Planning Using Semi-Definite Programming

Optimization problem (10) (or problem (9)) provides an
approach for robust network design via optimal allocation of
network link weights to minimize weighted network criticality.
Optimization problem (10) can be converted to a semi-definite
program (SDP) as stated in the following.

Minimize Tr(Y )

Subject to
∑

(i,j)∈E wijzij ≤ C ,C is fixed (11)
wij ≥ 0 ∀(i, j) ∈ EL+ J

n
U

1
2
α

U
1
2
α Y

 � 0

where � means positive semi-definite.

Solving this SDP problem is much faster and can be done
with a variety of existing packages (for example see [10]).

B. Robust Network Design: Protecting Against Multiple Link
Failures

The solution of optimization problem (9) or (10) provides a
robust network design method via optimal weight assignment;
however, it does not necessarily protect the network against
multiple link failures. Link failures can be the result of
unplanned random failures or due to targeted attacks. In this
section we extend optimization problem (9) to account for
multiple link failures.

Let D ∈ {0, 1}m be a binary matrix representing the location
of link failures, i.e. dij = 0 for failed link (i, j) and dij = 1 for
operational ones. We replace the weight matrix W with DoW (o
is the Hadamard operator) and redo the optimization of WNC.
Now if we would like the network to be robust to up to k link
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failures (we refer to such a network as k-robust network), we
need to minimize the following objective function.

max∑
i,j dij=n−k

Tr(UαL
+(DoW ))

Note that the above function is convex because it is a point-
wise maximum of a set of convex functions. By minimizing
this function we find a k-robust topology (along with its opti-
mal link weights). Therefore, a general optimization problem
to provide a k-robust network can be written as:

Minimize max∑
i,j dij=n−k Tr(UαL

+(DoW ))

Subject to
∑

(i,j)∈E wijzij ≤ C ,C is fixed (12)
wij ≥ 0 ∀(i, j) ∈ E

1) Joint Robust Optimal routing and Resource Allocation:
While our focus in this paper is not in flow assignment
or routing problem, we state that by interpreting weight as
capacity, optimization problem (12) can be extended to provide
simultaneous solution for k-robust flow assignment (routing)
and weight assignment (resource allocation), just by adding
the flow conservation equations and link capacity constraints.
Let γsd denote the traffic demand between nodes s and d, then
the conservation of flow for a specific node k, can be written
as:

∑
i∈A(k)

f
(sd)
ik −

∑
j∈A(k)

f
(sd)
kj = γsdδ(k − s)− γsdδ(k − d)

where A(k) denotes the set of neighbor nodes of node k, f (sd)ik

denotes the flow of link (i, k) for traffic entry between source
s and destination d, and δ(x) is Kronecker delta function.
Furthermore, the flow of each link should not exceed the
weight (capacity) of the link, therefore we can write the
optimization for robust joint flow assignment and resource
allocation as follows:

Minimize max∑
i,j dij=n−k

Tr(UαL
+(DoW )) (13)

Subject to
∑

(i,j)∈E
wijzij ≤ C ,C is fixed

wij ≥ 0 ∀(i, j) ∈ E∑
i∈A(k)

f
(sd)
ik −

∑
j∈A(k)

f
(sd)
kj = γsdδ(k − s)− γsdδ(k − d)

fij =
∑
sd

f
(sd)
ij ∀(i, j) ∈ E

fij ≥ 0 ∀(i, j) ∈ E

fij ≤ wij ∀(i, j) ∈ E

There is a variety of methods that can be used to develop
algorithms to provide the solution of the above optimization
problems (such as dual decomposition and interior point
methods); however, in this paper our goal is to present the
properties of the solution and its benefits. Therefore, in the
following section we focus on solving optimization problem
(12) for two important networks.

TABLE I
ROCKETFUEL DATASET ISPS

ISP Routers Links Reduced Reduced Weight Total
Cities Links per Link Weight

1755 87 322 18 33 0.7822 51.628

IV. APPLICATIONS

In the first and second parts of this section, we study the
application of optimization problem (12) and (13) in Rocket-
fuel topologies [11] and Abilene network [12] respectively. As
another application, in the third part, we discuss the design of
robust and sparse power grids.

A. RocketFuel Dataset

Our first experiment is on real ISP (Internet Service
Provider) maps from RocketFuel dataset [11]. We followed
the method described in [13] and collapsed the RocketFuel
ISP topologies into PoP to PoP connectivity networks. In other
words, we consolidated all the nodes within a city into a single
node, and aggregated all the links from one city to another one
in a single link, where the capacity of the link equals the sum
of the capacities of all the original links connecting different
sub-nodes between two cities. There are six ISP topologies
in RocketFuel dataset, whose topological information are
given in [13]. The topologies in RocketFuel dataset do not
include the capacities of the links, but we can use OSPF
weight information which is provided in RocketFuel dataset to
associate compatible capacities using Cisco recommendation
as described in [13]. Cisco recommends that the link capacities
are proportional to the reciprocal of the weights.

In this paper we work with one of the topologies from
RocketFuel dataset (see Table I). We would like to study
possible gains we may achieve by replacing present capacity
allocation for RocketFuel topologies with the optimal weight
(capacity) set obtained as the solution of the proposed k-robust
method. In the following experiments we consider 4 different
weight sets. First of all, since the networks are real, we already
have an initial weight (IW) set in which the weights are
proportional to the capacity of the real network. In the second
weight set, the total weight (total capacity) of the network
is uniformly distributed among all link weights; therefore, we
have equal weight allocation (EW). The third weight set which
is denoted by OT is the solution of optimization problem (11).
This solution is robust in the sense that network criticality
is minimized; however, it is not optimized for vulnerability
(i.e. failures). Finally, the fourth weight set is the result of
optimizing the network for link failure. We consider the case of
1-robust topology weight design using optimization problem
(12), and the optimal weight set is denoted by MMTL. In this
experiments all the link costs (zij’s) are assumed to be 1.

Table of Fig. 1 shows the value of network criticality
(objective function of optimization problem (11)), and the
value of max∑

i,j dij=n−k Tr(UαL
+(DoW )) (objective function

of optimization problems (12)) for RocketFuel topology 1755.
In the figure, these values are denoted by τ̂ and τ̂ ij (the
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Fig. 1. Parameters of Different Optimized Weight Sets for 1755 Network

Fig. 2. Abilene Network: Link Utilization for 3 Different Traffic Engineering
Methods: SPF, OW, and Network Criticality Minimization

superscript ij shows that τ̂ ij is the value of network criticality
when link (i,j) is removed) respectively. It can be easily seen
that there is a huge gap between IW and optimized weight
assignment for RocketFuel networks. This verifies that our
optimizations can significantly improve the vulnerability of
the network. For example, according to the table of Fig. 1, the
optimal vulnerability parameters of network 1755 show 42%
and 61.4% improvement respectively comparing with initial
weight (IW) case.

B. Optimal Joint Capacity Allocation/Routing for Abilene

In order to evaluate optimization problem (13), in this
section we consider Abilene network [12], since the real
traffic matrix traces for Abilene are publicly available (see the
website of TOTEM project [14] for a wide range of Abilene
traffic traces for different dates). We used one of the available
traffic matrices for Abilene, and solved joint optimization
problem (13) to find optimal link capacities and link flows
simultaneously. We measured the utilization of all the links
of Abilene and compared it with the link utilization of two
other traffic engineering methods, i.e. SPF (shortest path first)
and OW, where OW is a weight optimization tool for Intra-
domain internet routing protocols. OW algorithm determines
the weight of the links in order to utilize the network more
efficiently by using tabu search meta-heuristic method [15].
We used TOTEM software package [14] to find the best routes
(flow assignment per link) for the given traffic matrix using
SPF and OW methods, where the capacities were taken to be
the default Abilene’s link capacities specified in [12].

Fig. 2 shows the aggregate link utilization for all three traffic
engineering approaches. According to Fig. 2, in our method
(criticality), there is no link with utilization more than 40%,
while in the other two methods (SPF, and OW) we have links

Fig. 3. Power grids with one Generator Node

with high utilization, which makes the network vulnerable to
the future demands (if any). Our simulations revealed that if
we shut down a random link in Abilene, in most of the tests
both SPF and OW methods will have some links with 100%
utilization, while our method keeps the utilization of all the
links always below 70%.

C. Design of Robust Power Grids

The concept of (weighted) network criticality has a nice
application in power grids. Nowadays the idea of using renew-
able energy sources has gained considerable attention. Many
places with renewable energy (such as places with high wind)
are not within the reach of existing power grid network and
it is required to extend the existing power grid to the places
with renewable energy. Thus, we need to know how to design
a robust power network either standalone or as an extension
to the existing one. In addition to the robustness, a power grid
should be sparse enough, to avoid unnecessary power lines.

As elaborated in section II, the average power dissipation
of the grid in a DC-model approximation of a power grid, is
proportional to Tr(AL+), where A =< −→a −→a t > and −→a is the
vector of link electrical currents (< . > denotes time average)
[8]. Clearly A is a positive semi-definite matrix; consequently,
we can rewrite Tr(AL+) in the form of WNC (i.e. as a linear
combination of τij’s) using equations (1) to (5). Therefore,
minimization of power dissipation in power grids results in
minimization of WNC. We address the optimization of a power
grid network with multiple random independent loads supplied
by a generator. For consumer nodes, we specify mean load
āi < 0 and the variance σ2

i . At transmission (relay) nodes, the
average and variance of the load are zero. At the generator
we must have a0 = −

∑
i6=0 ai. Therefore, matrix A =< −→a −→a t >

can be written as:(
(
∑
i 6=0 āi)

2 +
∑
i 6=0 σ

2
i −−→1 t(−→a −→a t + Σ)

−(−→a −→a t + Σ)
−→
1 −→a −→a t + Σ

)

We let āi = −1 and σ2
i = 1

4
for consumer nodes in our tests

in this section. We consider an n − by − n grid (n is an odd
number) and we let the generator node be the middle node of
the grid and consumer nodes on the border nodes (Fig. 3-(a)),
or a middle node in one of the border lines of the grid and
consumers on the parallel border (Fig. 3-(b)).

First, we optimize the grid for power dissipation (i.e. we
minimize weighted network criticality Tr(AL+). The optimiza-
tion problem is essentially the same as problem (11) with
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Fig. 4. Optimal Grid Topologies - Thickness of the lines represent the
conductances

Fig. 5. (a) Optimal Robust Grid Topology (Link Failure), (b) Optimal Robust
Sparse Grid topology

appropriate values of αij , so that Uα = A. We solved problem
(11) for the given values of Uα = A. The optimal networks
are shown in Fig. 4-(a), (b), where the thickness of the lines
represent the link weights or line conductances (thicker line
has higher conductance). We discuss Fig. 4-(b), since it is
more vulnerable and needs attention. Fig. 4-(b) shows that by
optimizing weighted network criticality we prune the original
grid; however, this network does not provide protection against
possible link failures. We can use optimization problem (12)
to find a k-robust grid power topology. Fig. 5-(a) shows an
example of a 1-robust topology.

We provide one more extension that is particularly useful for
the case of power grids in which the network should be sparse
enough while preserving robustness. We would like to sparsify
the robust topology of 5-(a). Fortunately, there is an elegant
study on the context of sparsification using resistance distance.
In [16] the problem of finding an sparse version of a network is
addressed with the goal of keeping the total resistance distance
of the original graph and its sparse version as close as possible.
The authors have proposed an algorithm to find such sparse
networks. The algorithm works as follows. Suppose H is the
sparse version of graph G. Choose a random line (i, j) of the
network G with probability pij proportional to wijτij , where
τij is the point-to-point network criticality or the resistance
distance seen between nodes i and j. Add (i, j) to H with
weight wij

qpij
, where q is the number of independent samples

(we should sum up weights if a line is chosen more than
once). We used this algorithm to simplify the optimal robust
network of Fig. 5-(a), and the result is shown in Fig. 5-(b).

The network criticality of the sparse topology in Fig. 5-(b)
is close to that of the original topology (Fig. 5-(a)) and it
is still 1-robust, but the structure that number of active links

(power lines) in the topology of Fig. 5-(b) is much less than
the original one.

V. CONCLUSIONS

We investigated the application of network criticality to
the design of k-robust networks. We argued that some of
the important network performance metrics can be generally
expressed as weighted network criticality (WNC), which is in
fact a linear function of point-to-point resistance distances. We
then constructed an optimization problem to minimize WNC,
and discussed a k-robust (min-max) approach in which the
network is protected against up to k link failures. We studied
the optimal weight assignment for RocketFuel topologies. We
also studied the joint robust assignment of capacities and flows
using WNC, and we verified the usefulness of the proposed
optimization method by solving the joint resource and flow
assignment for Abilene network. Moreover, we showed the
application of the min-max optimization problem in the design
of robust power grid topologies. We also presented a method
to sparsify the robust solution to avoid unnecessary expensive
power links.

In our next research, we consider the design of robust
networks when the links are directional. Furthermore, we
study the case of designing robust networks at the presence of
correlated link failures.

REFERENCES

[1] D. J. Klein and M. Randic. Resistance Distance. Journal of Mathemat-
ical Chemistry, 12(1):81–95, December 1993.

[2] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks.
Mathematical Association of America, 1984.

[3] A. Ghosh, S. Boyd, and A. Saberi. Minimizing Effective Resistance of
a Graph. SIAM Review, problems and techniques section, 50(1):37–66,
February 2008.

[4] A. Tizghadam and A. Leon-Garcia. Autonomic Traffic Engineering for
Network Robustness. IEEE Journal of Selected Areas in Communica-
tions (J-SAC), 28(1):39 – 50, January 2010.

[5] A. Tizghadam and A Leon-Garcia. On Traffic-Aware Betweenness
and Network Criticality. In INFOCOM Second Workshop on Network
Science for Communications (NetSciCom), San Diego, CA, March 2010.

[6] M. Newman. A Measure of Betweenness Centrality Based on Random
Walks. arXiv cond-mat/0309045., 2003.

[7] C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its
Applications. John Weily and Sons Inc., 1971.

[8] JK. Johnson and M. Chertkov. A Majorization-Minimization Approach
to Design of Power Transmission Networks. arXiv:1004.2285, Septem-
ber 2010.

[9] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press,
2 edition, 2009.

[10] M. Grant and S. Boyd. CVX: Matlab Software for Disci-
plined Convex Programming (Web Page and Software). http :
//stanford.edu/ boyd/cvx. September 2008.

[11] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
Topologies with Rocketfuel. IEEE/ACM Transactions on Networking
(TON), 12(1):2–16, February 2004.

[12] Abilene Network. http://www.internet2.edu/network/.
[13] D. Applegate and E. Cohen. Making routing robust to changing

traffic demands: algorithms and evaluation. IEEE/ACM Transactions
on Networking (TON), 14(6):1193–1206, December 2006.

[14] TOTEM Project (TOolbox for Traffic Engineering Methods).
http://totem.run.montefiore.ulg.ac.be/.

[15] B. Fortz and M. Thorup. Increasing Internet Capacity Using Local
Search. Computational Optimization and Applications, 29:13–48, 2004.

[16] DA. Spielman and N. Srivastava. Graph Sparsication by Effective
Resistances. In Proceedings of the 40th annual ACM Symposium on
Theory of Computing (STOC), pages 563–568, 2008.

886


