
1

Hard-Deadline-based Frame Filtering Mechanism
Supporting the Delivery of Real-Time Video

Streams
Jun Liu (jliu@cs.und.edu)

Computer Science Department, University of North Dakota

Abstract— This paper describes a cross-layer filtering mecha-
nism which facilitates real-time video frames to meet their strin-
gent decoding deadlines in the existence of network congestion.
The basic idea is to remove the dysfunctional video frames, which
have missed their decoding deadlines, from transmission as early
as possible, since they no longer serve for the functioning of a
real-time media streaming application. The filtering mechanism
consists of a pair of components which operate at the encoder and
the decoder, respectively. The decoder-side component identifies
the dysfunctional frames and sends the notifications to the
encoder. The encoder-side component removes the identified dys-
functional frames from transmission. By removing dysfunctional
frames from transmission, the video frames that are behind the
dysfunctional frames are eligible for transmission at an earlier
time and are made likely to meet their decoding deadlines. Mean-
while, removing dysfunctional frames from transmission also
serves to maintain a stable and low queueing delay. The filtering
mechanism relies on a user-space transport stack which enables
the application-controlled transmission of data segments. The
effectiveness of the filtering mechanism has been demonstrated
through experiments in emulated networks.

Index Terms— Real-Time Media Streaming, Deadlines, Frame
Cancellation, Cross-Layer Design, User-Space Transport Support

I. INTRODUCTION

Real-time video streaming applications have stringent re-
quirements of meeting the latency constraints, such as the
live or interactive video streaming applications. In these ap-
plications, video frames that are delivered from an encoder
to a decoder are only valid within a tight time frame. If a
video frame can not be decoded before the end of its valid
time frame, then it can not contribute to the functioning
of an application. Hence, maintaining the perceived quality
requires that a steady transmission delay is maintained along
the end-to-end path used for video stream delivery. However,
the bit rate of a video stream can largely vary over short
and long timescales due to the inherently varying spatio-
temporal complexity of video content [1]. The unsteady bit
rates of video streams easily lead to fluctuations of end-to-
end delays and packet losses, which, in turn, cause many
video frames to miss their decoding deadlines on the decoder
side. Effective mechanisms are needed for supporting real-time
video streaming to achieve an acceptable rendering quality.

Many rate-adaptive video encoding methods [2], [3], [4],
[5], [6] have been proposed for regulating the unsteady bit
rates of video streams in the existence of dynamic bandwidth,
delays, and packet losses. These methods can be roughly

categorized into multi-file/multi-rate switching methods [4],
[5], the adaptive single-layer encoding methods [7], [8], and
the scalable multi-layer encoding methods [9], [3], [10]. These
methods require either special encoding mechanisms, or re-
dundant storage of the video content, or special encoding on
video content, or special filtering mechanism.

In this paper, we describe a cross-layer filtering mechanism
which fits into the category of adaptive single-layer encoding
methods. This filtering mechanism aims to facilitate real-time
video frames to meet their stringent decoding deadlines by
removing defunct frames from transmission. A defunct frame
is a frame which either has missed its decoding deadline or can
not be properly decoded because of a corrupted dependency.
The filtering mechanism operates on top of a user-space
transport stack which runs completely in user space. The user-
space transport stack enables the application-controlled trans-
mission of data segments. The filtering mechanism consists of
a pair of components which operate at the encoder and the
decoder, respectively. The decoder-side component identifies
the defunct frames and sends the notifications to the encoder.
The encoder-side component removes the identified defunct
frames from transmission through interacting with the user-
space transport stack. By removing the defunct frames from
transmission, the frames that sit behind the defunct frames are
made likely to meet their decoding deadlines, since they are
eligible for transmission at an earlier time.

Application

Transport Module

Interface
Mechanism

UDP SocketUser Space

Kernel Space

Mark Cancellation Read Packet
Transmission Status

Read Cancellation Marks

Send Packets Receive Packets

Fig. 1. The architecture of the interactions between an application
and the user-space transport stack.

IEEE INFOCOM 2011 International Workshop on Future Media Networks and IP-based TV

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 85

The cross-layer filtering mechanism relies on the support
of an interface mechanism which facilitates the interaction
between an application and a user-space transport stack as
illustrated in Figure 1. The user-space transport stack provides
a flexible user-space transport support and enables application-
controlled flow control and feedback by allowing application-
specific customizations [11]. A real-time video streaming
application can express its control instructions over the data
segments to the user-space transport stack through an interface.
The interaction can be viewed as a user-space implemen-
tation of the kernel-space transport-layer buffer holding the
unacknowledged data segments, e.g., the congestion window
used in TCP. The interface is only needed on the sender
side. Through the interface mechanism, an application can
also read the transmission status of the data segments that are
under transmission. Enabling the interaction between a real-
time video streaming application and the user-space transport
stack is essential to make the rate of the video stream to be
adapted to the available bandwidth [12], [13], [14].

Our contributions in this work are briefed as follows. First,
an application-controlled flexible transmission arrangement is
made possible through the interaction between a real-time
video streaming application and a user-space transport stack.
Second, our filtering mechanism does not rely on prioritized
scheduler or multiple queues on the encoder side. It is highly
computationally expensive in operating prioritized scheduler
or maintaining multiple queues. Only simple data structures
are used in our mechanism for identifying and removing the
defunct frames. Third, no special and sophisticated encoding
scheme is required in our case. Our mechanism only needs to
know the inherent dependency structure among video frames.
Fourth, the defunct frames are more effectively identified in
our filtering mechanism, because the identification is made by
the decoder which has a better knowledge than the encoder
about which frames no longer serve for the functioning of a
real-time video streaming application. In many other designs,
the scheduling decisions on transmission are made on the
encoder side. In general, the encoder-side scheduling decisions
on transmission are less effective because the encoder has to
infer the need of the decoder.

The effectiveness of our filtering mechanism has been
demonstrated through experiments in emulated networks. The
experimental results have demonstrated the following benefits
of adopting our filtering mechanism. First, removing the
defunct frames from transmission serves to stabilize the end-
to-end queueing delays. Second, the prioritized video frames
(I frames) are relatively favored for continued transmission
than the less prioritized frames (P or B frames), when the
network is in congestion. Third, removing defunct frames from
transmission based on the identification made by the decoder
allows the play-out quality to be gracefully downgraded when
the network is in congestion. Blindly removing frames from
transmission will inevitably worsen the play-out quality.

In the rest of this paper, the related work is presented in
Section II. The structure of the interface mechanism is briefed
in Section III. The structure of our cross-layer filtering mech-
anism is described in Section IV. The empirical evaluation of
the filtering mechanism is described in Section V. Our work

is summarized in Section VI.

II. RELATED WORK

Rate adaptation can be achieved through joint source/chan-
nel encodings which combine the transport control and the
video encoding mechanisms. The video encoding can be
altered in order to adapt the bitstream rate to the available
bandwidth [15]. A transport control mechanism reacts to
network congestion by adjusting the rate at which a bit stream
is injected into the network [12], [13], [14].

The rate-adaptive video encoding methods can be roughly
categorized into the multi-file/multi-rate switching meth-
ods [4], [5], the adaptive single-layer encoding methods [7],
and the scalable multi-layer encoding methods [9], [3], [6],
[10].

Our filtering mechanism belongs to the adaptive single-layer
encoding methods. Although a video stream can be encoded
into multiple layers, our filtering mechanism treats a layer-
encoded video stream as a single layer. Rate adaptation is
achieved through dropping the defunct frames, many of which
belong to the enrichment layer and are with a lower priority,
in the existence of network congestion.

A. Semi-Reliable Transport Control Protocols

Adaptive Automatic Repeat reQuest (ARQ) [16] with con-
ditional frame skipping, reference frame selecting and intra-
frame refreshing techniques has been adopted for H.26L
real-time video streaming over WLAN. Semi-reliable multi-
cast [17] is designed to support the distributed multimedia
applications based on groups. In this scheme, data are clas-
sified before being transmitted, establishing different impor-
tance or priority levels for error recovery (retransmission).
A transcoding-based frame-rate control scheme is proposed
in [18] for frame-rate reduction to improve picture quality.
This scheme dynamically adjusts the number of skipped
frames according to the incoming motion vectors and re-
encoding errors due to transcoding such that the decoded se-
quence can have a smooth motion as well as better transcoded
pictures. Selective frame discard [8] is a transport-level rate
shaping, which estimates the minimum number of frames that
must be discarded in order to meet transport constraints.

III. THE STRUCTURE OF THE INTERFACE MECHANISM

The interface mechanism enables the interaction between an
application and the user-space transport stack. On one hand,
an application can pass its transmission control instructions to
the transport stack. On the other hand, the transport stack can
report the status of the transmission of data segments to an
application. The main component of the interface is a circular
queue which maintains a transport-oriented record for each
data segment, as well as the cancellation flag. An interface
mechanism is maintained for each stream to hold the not-
yet-acknowledged data segments of a stream. The user-space
transport stack can support multiple streams and can access
the interface mechanisms of all the active streams.

86

The user-space transport stack enables applications to per-
form application-controlled semi-reliable transmission of data
segments. An application can remove some data segments
from continued transmission after these segments have been
submitted to the transport stack for transmission. An ap-
plication expresses its cancellation instructions through the
interface to the transport stack which physically removes
the data segments from its storage. The user-space transport
stack is developed based on DCCP/TP [19] which is a user-
space implementation of the DCCP protocol [20], [21]. In our
work, we have introduced the cancellation mechanism into the
DCCP/TP implementation. The cancellation flag of each data
segment is assigned with a value of “NOT CANCELLED”
by default when it is submitted to the transport stack by an
application. Through the interface mechanism, an application
can change the cancellation flag of a data segment from
“NOT CANCELLED” to “CANCELLED.” Hence, the data
segments which have not been cancelled by an application are
allowed for reliable transmissions. In contrast to our user-space
transport stack, the traditional transport stack does not allow
an application to cancel the transmission of data segments that
are under its transport control.

IV. THE CROSS-LAYER FILTERING MECHANISM

The cross-layer filtering mechanism aims to facilitate real-
time video frames to meet their stringent decoding deadlines
by removing the defunct frames from transmission. The fil-
tering mechanism is composed of two components which are
deployed at the encoder and at the decoder, respectively. The
decoder-side component identifies the defunct frames using a
dependency structure among frames, and it also notifies the en-
coder about the identified defunct frames through embedding
the notifications in the acknowledgment packets that are sent
to the encoder. Then, the encoder-side component removes the
identified defunct frames from transmission.

Encoder

Packet Filter

Transport Stack

Packet Filter

Transport Stack

Frame Filter

Decoder

Network

Video Packets

 Packets
to Transmit

Send Receive ReceiveSend

Cancellation Marks
 from Decoder

Cancellation
 Marks

Decodable
 Frames

 Raw
packets

 Send
Cancellation
 Marks
 to Encoder

Frames

Interface Mechanism

Packetizer

Video Frames

Fig. 2. The architecture of the filtering mechanism.

A. The General Structure of A Filtering Component

The architecture of the filtering mechanism is shown in
Figure 2. The filtering mechanism is composed of two filtering
components that are at the encoder and at the decoder, re-
spectively. The decoder-side component identifies the defunct
frames using the decoding deadlines and the dependency
structures among video frames. The decoder-side component
also notifies the encoder-side component about the identi-
fied defunct frames. The encoder-side component updates its
filtering rules using the notifications sent by the decoder-
side component. The filtering components in our work are
constructed to support MPEG encoded video streams. The
methodology of the filter construction can be applied to other
encoding methods.

B. The Filtering Component on the Encoder Side

The encoder-side filtering component is illustrated in Fig-
ure 3 (a). A list of reference frames is maintained in the
packet filter for keeping track of the dependency structures
among frames. Once any of the reference frames in the list is
notified by the decoder as a defunct frame, the encoder marks
the record of the same frame in the packet filter as defunct.
The future packetized frames generated by the packetizer are
ignored if any one of their reference frames has been marked
as defunct in the list of reference frames. Meanwhile, the
encoder also changes the cancellation flags of these packetized
frames in the transport stack into “CANCELLED.”

C. The Filtering Component on the Decoder Side

The decoder-side filtering component is illustrated in Fig-
ure 3 (b), which checks for the expiration of the decoding
deadlines for either the partial or completed frames. This
filtering component accepts the valid frames for decoding.
A valid frame is one which is received before the frame’s
decoding deadline and satisfies its decoding dependency. The
decoding deadline for a MPEG frame is specified by a Decode
Time-Stamp (DTS). All deadline-expired frames are discarded.
If a deadline-expired frame is a reference frame, then it has
to be labeled as defunct in the list of reference frames. The
decoder also notifies the encoder with the identified defunct
frames by embedding the notification in an ACK packet.

V. EMPIRICAL PERFORMANCE EVALUATION

The effectiveness of the cross-layer filtering mechanism is
demonstrated through experiments that are conducted in a
lab-scale emulated network with the network topology shown
in Figure 4. These experiments aim to demonstrate that the
following effects can be achieved by adopting the cross-layer
filtering mechanism.

(1) Maintaining a stable and low end-to-end queueing delay;
(2) Favoring the more important video frames (I frames)

for continued transmissions when the network is in
congestion;

(3) Gracefully downgrading the play-out quality when the
network become congested.

87

GoP k GoP k+1 GoP k+n

Head Tail

PacketizerVideo Encoder

Transport Stack

Congestion Window

Transport

Packet Filter

List of Reference Buffers

Controller

Acknowledgements
Sent by the Decoder

Cancellations

Marking
Packetized

Valid

Encoder Side

Window
Update

Packetized
Frames

Frames

Frames

Packetized
Cancelled

Frames

Packets
Transmit

Discard

Interface

Records of Pending Packets

GoP k GoP k+1 GoP k+n

Head Tail

Filter for Complete Frames

Video
Decoder

Transport Stack

Receive Window Acknoledgment

Packet Filter

List of Reference Buffers

Mechanism

In the Acknowledgements
To the Encoder

Decoder Side

Video
Rendering

List of Completed Frames

List of Partial Frames

Filter for Partial Frames

Incoming Data Packets Send Cancellations

Buffer Up Valid Packets

Checking for
Cancelled Dependency

Cancellations
On Records of

and Missed DTS

Checking for
Cancelled Dependency

and Missed DTS

Checking for
and Missed DTS

Mark

Cancellations
Send

to Encoder

Frames
Valid

Defunct Frames

Discard
Packets of

Defunct Frames

Discard

and

Ref. Frames

Valid Frames

Including the ones

Acknowledge
Received Packets

That are Discarded

(a) On the Encoder Side (b) On the Decoder Side
Fig. 3. The structures of the encoder-side and the decoder-side components.

Router 1 Router 2 Router 3 Router 4

Bottleneck Link

Non−Bottleneck Queues

Bottleneck Queue

DestinationsSources

Fig. 4. The Topology of the Sample Network Used in the Experi-
ments.

A. Experiment Settings

In a lab-scale emulated network with its topology shown
in Figure 4, the backbone path is made up of four emulated
routers. The link between router 2 and 3 is made into a
bottleneck link, and router 2 is treated as the bottleneck
router. The link capacity, buffer capacity, propagation delays,
and packet dropping policies of router 2 are configurable by
running the NISTnet [22] emulation toolbox. The NISTnet
emulator emulates the handling by a “real router” on the traffic
flow from router 2 to router 3. The NISTnet emulator can drop
packets according a dropping policy, or can hold up packets for
a prescribed time interval for emulating a propagation delay.
The NISTnet emulator forwards packets onto the bottleneck

link at the speed of the prescribed link bandwidth. Since the
emulated bandwidth of the bottleneck link is configured as 4
Mbps as compared to 100 Mbps bandwidth on other links,
almost all the queueing delays happen at the outgoing queue
of router 2. The one-way propagation latency from a source
to a destination is set to be 50ms.

In the experiments, 15 flows deliver the same video stream
from sources (video encoders) to their corresponding destina-
tions (video decoders) as shown in Figure 4. The video stream
is called xmen2 which contains a total of 3448 frames and
lasts approximately 140 seconds. The video signal is encoded
in MPEG-4 format with a video encoding rate of 250Kb/s
(or 25 frames/second) and an audio encoding rate of 96Kb/s.
There are 297 GoPs with an average of 11.6 frames per GoP
in the video clip. Among the 15 flows, 5 flows are treated
as the real-time video streams, and the rest are treated as
the cross traffic. By enabling or disabling the 10 cross traffic
flows, we demonstrate the performance of the 5 real-time video
streams with or without cross traffic along the backbone path.
Each video frame is associated with a fixed 55ms decoding
deadline which is slightly larger than the one-way propagation
delay. This means that each video frame can tolerate minor
queueing delays. The same value of the deadline applies to all
the evaluation results shown in this section.

The play-out quality is evaluated using the metric of the
peak signal-to-noise ratio (PSNR). The computation of the
PSNR metric is based on the EvalVid package [23] and
the ViTooKi package [24]. The EvalVid package measures
the video quality evaluation of the received video based on the

88

frame-by-frame PSNR calculation. The ViTooKi package is
a high-level multimedia library which supports a large number
of multimedia features.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
ue

ui
ng

 d
el

ay
 (i

n
m

s)

Flow ID

With Filtering Disabled
Overall Avg. Queueing Delay with Filtering Disabled

With Filtering Enabled
Overall Avg. Queueing Delay with Filtering Enabled

Fig. 5. Comparison of the end-to-end queueing delays with and
without cross traffic. The comparison is demonstrated using the 95%
confidence interval of each metric.

B. Stabilizing the Latencies
By enabling and disabling the cross traffic, we compare the

end-to-end queueing delays and round-trip times (RTTs) for
the flows. All these metrics are measured on the encoder side.
The queueing delays and RTTs are measured on a per-packet
basis. The end-to-end queueing delay is the difference between
an RTT of a packet and the round-trip propagation latency. The
comparison is demonstrated by the 95% confidence interval of
each metric as shown in Figure 5. When the cross traffic is
enabled, the end-to-end queueing delays and RTTs are still
kept low and are constrained in very narrow ranges.

C. Favoring I Frames for Continued Transmissions

Flow IDs With Cross Traffic Without Cross Traffic
I Frames P/B Frames I Frames P/B Frames

1 60 1657 42 633
2 73 2239 51 771
3 42 2000 44 795
4 61 2290 50 766
5 56 1965 42 709

TABLE I
COMPARISON OF THE CANCELLED FRAMES BY FRAME TYPES.

Table I shows the comparison of the cancelled video frames
by types for with and without cross traffic. Due to the
stringent setting of the deadline (55ms), missing deadlines is
possible when without cross traffic. By treating the numbers of
cancelled frames by types without cross traffic as the baseline,
we examine the cancelled I frames under cross traffic. We
can see that the numbers of cancelled I frames under cross
traffic are only slightly larger than the corresponding baseline
figures, while a large number of the defunct P or B frames
are removed from the transmissions. Thus, the frames sitting
behind the defunct frames are eligible for transmission at an
earlier time.

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PS
N

R
(d

B)

Flow ID

With Filtering Disabled
Overall Average PSNR with Filtering Disabled

With Filtering Enabled
Overall Average PSNR with Filtering Enabled

Fig. 7. Comparison of the play-out quality using the 95% confidence
intervals of the per-frame PSNR.

D. Gracefully Downgrading the Play-out Quality
The comparison of the PSNRs of the encoded video streams

with and without cross traffic is shown in Figure 7. The com-
parison of the PSNRs is demonstrated by the 95% confidence
interval of the PSNRs for every video stream. Due to the image
compression, a decoder can not restore the original images
from the MPEG encoded video frames. The PSNRs of a
MPEG encoded image characterize the distortion between the
original image before encoding and the corresponding restored
image after decoding. The PSNRs of a MPEG encoded video
stream exhibit decay in the playout quality even when trans-
mission is not involved, i.e., without any extra transmission
delays, or frame losses. When transmission of frames is
involved, some frames can become expired. Hence, the play-
out quality after transmission should be further decayed in
addition to the decays caused by the compressions.

When without cross traffic, our filtering mechanism serves
to restrict the additional decay in the play-out quality and
make the average PSNRs to be approximately 38.5 dB which
is the original decay of the video clip (ref. Figure 7). When
with the cross traffic, the PSNR will inevitably further decay
due to higher queueing delays. In this case, our filtering
mechanism can help to make the further decay to be low.
The further decay is at about 10 dB (ref. Figure 7). The
frame-by-frame PSNR is also shown for one flow in Figure 6.
When without cross traffic, the PSNRs of most frames after
transmission are made very close to the original PSNRs, expect
for some frames whose play-out quality is further decayed
after transmission (ref. Figure 6 (a) and (b)). When with cross
traffic, the quality of many frames after transmission is further
decayed (ref. Figure 6 (b) and (c)). Without adopting our
filtering mechanism, the further decay in paly-out quality can
only be much worse.

VI. CONCLUSIONS

This paper described a cross-layer filtering mechanism
which cancels the continued transmission of the frames that
can not be properly decoded before their decoding deadlines.
This filtering mechanism aims to stabilize the network delay
in existence of network congestion by dropping the defunct
frames. A well-controlled network congestion facilitates the

89

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

PS
N

R
 (d

B
)

Frames

Per-Frame PSNR

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

PS
N

R
 (d

B
)

Frames

Per-Frame PSNR

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

PS
N

R
 (d

B
)

Frames

Per-Frame PSNR

(a) Without cross traffic (b) The original PSNR (c) Without cross traffic
Fig. 6. Comparison of the per-frame PSNR of one flow for with and without cross traffic.

frames that sit behind the defunct frames to meet their decod-
ing deadlines. The effectiveness of this filtering mechanism
has been examined through experiments in emulated network
environments. The experimental results show that the filter-
ing mechanism serve to achieve the following effects. First,
removing the defunct frames from transmission serves to sta-
bilize the end-to-end queueing delays. Second, the prioritized
video frames (I frames) are relatively favored for continued
transmissions than the less prioritized frames (P or B frames),
when the network is in congestion. Third, the play-out quality
is gracefully downgraded when the network is in congestion.

REFERENCES

[1] Damir Isovic, Gerhard Fohler, and Liesbeth Steffens. Real-time issues
of MPEG-2 playout in resource constrained systems. In Journal of
Embedded Computing, 1(2):239–256, 2005.

[2] Kavitha Chandra and Amy R Reibman. Modeling one-and two-layer
variable bit rate video. In IEEE/ACM Transactions on Networking,
7(3):398-413, 1999.

[3] Mehdi Alasti, Kamran Sayrafian-Pour, Anthony Ephremides, and Nari-
man Farvardin. Multiple Description Coding in Networks with Conges-
tion Problem. In IEEE Transactions on Information Theory, 47(3):891-
902, Apr 2001.

[4] Gregory J. Conklin, Gary S. Greenbaum, Karl O. Lillevold, Alan F.
Lippman, and Yuriy A. Reznik. Video coding for streaming media
delivery on the Internet. In IEEE Transactions on Circuits and Systems
for Video Technology, 11(3):269-281, 2001.

[5] Patrick Seeling, Martin Reisslein, and Frank H.P Fitzek. Layered video
coding offset distortion traces for trace-based evaluation of video quality
after network transport. In Proceedings of the International Conference
on Computer Communications and Networks (ICCCN), San Diego, CA,
October 17-19 2005.

[6] Giuseppe Bianchi, Andrea Detti, Pierpaolo Loreti, Claudio Pisa,
Francesco S Proto, Wolfgang Kellerer, Srisakul Thakolsri, and Joerg
Widmer. Application-aware H. 264 Scalable Video Coding delivery
over Wireless LAN: experimental assessment. In Proceedings of the
The International Workshop on Cross Layer Design (IWCLD), Palma
de Mallorca, Spain, June 11-12 2009.

[7] John D McCarthy, M Angela Sasse, and Dimitrios Miras. Sharp
or smooth? Comparing the effects of quantization vs. frame rate for
streamed video. In Proceedings of the ACM conference on Human
factors in computing systems (CHI), page 542, Vienna, Austria, April
24-29 2004.

[8] Zhi-Li Zhang, Srihari Nelakuditi, Rahul Aggarwal, and Rose P Tsang.
Efficient selective frame discard algorithms for stored video delivery
across resource constrained networks. In Real-Time Imaging, 7(3):255–
273, 2001.

[9] Maureen Chesire, Alec Wolman, Geoffrey M Voelker, and Henry M
Levy. Measurement and analysis of a streaming media workload. In
Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS), San Francisco, CA, March 26-28 2001.

[10] John G Apostolopoulos. Reliable video communication over lossy
packet networks using multiple state encoding and path diversity. In
Proceedings of the SPIE Visual Communications and Image Processing
Conference (VCIP), volume 1, San Jose, CA, January 2001.

[11] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels.
U-Net: a user-level network interface for parallel and distributed com-
puting. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 40–53, Copper Mountain, CO, December 3-6
1995.

[12] Nirwan Ansari, Hai Liu, Yun Q Shi, and Hong Zhao. On modeling
MPEG video traffics. In IEEE Transactions on Broadcasting, 48(4):337–
347, December 2002.

[13] Min Dai and Dmitri Loguinov. A unified traffic model for MPEG-4
and H. 264 video traces. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), Miami, FL,
March 13-17 2005.

[14] Xiao-Dong Huang, Yuan-Hua Zhou, and Rong-Fu Zhang. A multiscale
model for MPEG-4 varied bit rate video traffic. In IEEE Transactions
on Broadcasting, 50(3):323–334, January 2004.

[15] Dapeng Wu, Yiwei Thomas Hou, W Zhu, Ya-Qin Zhang, and Jon M
Peha. Streaming video over the Internet: approaches and directions.
In IEEE Transactions on Circuits and Systems for Video Technology,
11(3):282–300, 2001.

[16] Min Chen and Gang Wei. Multi-stages hybrid ARQ with conditional
frame skipping and reference frame selecting Scheme for Real-Time
Video Transport Over Wireless LAN. In IEEE Transactions On
Consumer Electronics, 50(1):158–167, January 2004.

[17] Christiane Montenegro Bortoleto, Lau Cheuk Lung, Frank A Siqueira,
Alysson Neves Bessani, and Joni da Silva Fraga. A Semi-Reliable
Multicast Protocol for Distributed Multimedia Applications in Large
Scale Networks. In Springer Lecture Notes in Computer Science (LNCS),
3754:109–120, 2005.

[18] Kai-Tat Fung, Yui-Lam Chan, and Wan-Chi Siu. New architecture for
dynamic frame-skipping transcoder. In IEEE Transactions on Image
Processing, 11(8):886–900, January 2002.

[19] Tom Phelan. DCCP-TP—a fresh-start implementation of the Datagram
Congestion Control Protocol (DCCP). http://www.phelan-4.com/dccp-
tp/tiki-index.php.

[20] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram Congestion
Control Protocol (DCCP). RFC 4340 (Proposed Standard), 4340, IETF,
March 2006. Updated by RFCs 5595, 5596.

[21] Eddie Kohler, Mark Handley, and Sally Floyd. Designing DCCP:
Congestion Control Without Reliability. In Proceedings of the ACM
International Conference on Communications Architecture and Proto-
cols (SIGCOMM), pages 27–38, Piza, Italy, September 11-15 2006.

[22] Mark Carson and Darrin Santay. NIST Net–A Linux-based Network
Emulation Tool. In SIGCOMM Computer Communications Review
(CCR), 33(3):111–126, July 2004.

[23] Jirka Klaue, Berthold Rathke, and Adam Wolisz. Evalvid-a framework
for video transmission and quality evaluation. In Springer Lecture Notes
in Computer Science (LNCS), 2794:255–272, January 2003.

[24] Michael Kropfberger, Laszlo Boszormenyi, Hermann Hellwagner, and
Peter Schojer. ViTooKi: the video toolkit. http://vitooki.sourceforge.net/,
2004.

90

