
Improving the Performance of Intrusion Detection
using Dialog-based Payload Aggregation

Tobias Limmer and Falko Dressler
Computer Networks and Communication Systems, University of Erlangen, Germany

{limmer, dressler}@cs.fau.de

Abstract—We propose Dialog-based Payload Aggregation
(DPA) that extracts relevant payload data from TCP/IP packet
streams based on sequence numbers in the TCP header for im-
proved intrusion detection performance. Typical network-based
Intrusion Detection Systems (IDSs) like Snort, which use rules
for matching payload data, show severe performance problems
in high-speed networks. Our detailed analysis based on live
network traffic reveals that most of the signature matches either
occur at the beginning of TCP connections or directly after
direction changes in the data streams. Our DPA approach exploits
protocol semantics intrinsic to bidirectional communication, i.e.,
most application layer protocols rely on requests and associated
responses with a direction change in the data stream in between.
DPA forwards the next N bytes of payload whenever a connection
starts, or when the direction of the data transmission changes.
All data transferred after this window is discarded. According
to experimental results, our method reduces the amount of data
to be analyzed at the IDS to around 3.7% for typical network
traffic. At the same time, more than 89% of all potential events
can be detected. Assuming a linear relationship between data rate
and processing time of an IDS, this results in a speedup of more
than one order of magnitude in the best case. Our performance
analysis that combines DPA with Snort shows a 400% increase
in packet processing throughput on commodity hardware.

I. INTRODUCTION

Attack detection on network traffic can be performed
using methodologies from different classes. On the one hand,
anomaly-based systems operate by constructing a traffic model
with normal behavior using specific properties of the traffic.
If a certain deviation from this model is observed, a so-
called anomaly is detected. On the other hand, rule-based, or
signature-based, systems have predefined rules that specifically
look for certain properties in the observed traffic. If all proper-
ties of a rule are detected, it will be reported. High processing
speeds can be achieved by using statistical properties that are
retrieved from router statistics (e.g., the number of packets)
or packet header data (e.g., packet sizes or traffic volume),
as only a fraction of the packet data is processed. However,
many common rule-based Intrusion Detection Systems (IDSs)
use both packet header and payload data for event detection.
This is also called Deep Packet Inspection (DPI). Thus, they
need to process all data transferred over the network. Typical
examples are network-based IDSs like Snort [1] or Bro [2].

The key concept is the following: First, if incoming packets
represent a continuous data stream (e.g., a TCP connection),
packets are reassembled to the original data stream using
a module that checks the validity of each packet (i.e., the
checksum and some connection-specific fields), verifies if the

packet was transferred to the peer and the peer acknowledged
its reception (to counter concealing attacks directed at the IDS)
[3]. Afterwards, the IDS starts analyzing the incoming data:
protocol-specific preprocessors analyze the data stream, extract
information and save flags for later use. Then, a set of rules
defines header and payload checks to determine whether some
relevant event has been recorded. During this stage, patterns
contained in the rules are matched to payload data. In some
cases, these simple rules do not suffice and a complex state-
based analysis needs to be performed. In these cases, the IDS
either offers an adequate scripting language (e.g., Bro) or
extension modules that process the traffic (e.g., Snort).

Payload-based pattern matching puts high resource require-
ments on the hardware. For current network speeds up to
10Gbit/s and more, single IDS machines are not able keep
up [4]. Besides parallelization, multiple approaches have been
proposed used to speed up data analysis: Filtering based on
header data is based on efficient flow aggregation [5]. Almost
all header data (e.g., source and destination addresses, ports,
packet size, protocol information and flags) may be checked
by rules to filter data streams before payload is analyzed. The
use of efficient rules is important, as, besides simple string
matching, IDSs often support regular expressions for pattern
matching. Finding a match for regular expressions may take up
to one second in extreme situations [6]. To counter performance
problems, regular expressions are often only evaluated if a
simple content match was successful. Optimization of pattern
matching algorithms is a common objective in computer
science. Many new algorithms have been proposed in recent
years [7]. The use of specialized hardware is another option.
There have been several efforts that use specialized hardware
for speeding up the payload matching process, like graphic
cards or FPGAs [8], resulting in speed-ups of up to 60%.

A completely different approach is data sampling, where the
amount of input data is reduced by various lightweight selection
mechanisms. As packet sampling would lead to incorrect per-
flow information, flow sampling has been introduced to obtain
this information [9].

In this paper, we present a technique for speeding up network-
based IDS by performing intelligent and lightweight filtering on
the input data, thus reducing the amount of data that needs to be
processed by the IDS. Several methods for this type of payload
aggregation have already been proposed in literature [10], [11],
but to our knowledge, the relevance of the filtered data for
security-related analysis has not yet been evaluated. Based on

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 833

this evaluation, we propose a completely new method of data
aggregation specialized on payload-based intrusion detection:
Dialog-based Payload Aggregation (DPA). Filtering cannot be
done in an IDS-independent manner, because we need to ensure
that as many of the security-relevant events as possible are
still detected. Time machine is one approach to the problem
that was suggested in [10]. It stores the first N bytes of data
per connection to enable security analysts to look at historical
network data. We adapted this approach to live analysis that we
named Front Payload Aggregation (FPA) [11] using extended
IPFIX flow data [5]. For FPA, we coupled our monitoring-
framework Vermont [12] with Snort and only forwarded the
first N bytes of each connection to the IDS. DPA, an initial
description was presented in [13], however, goes well beyond
time machine and FPA as it focuses on the relevant parts of
the entire session instead of the first N bytes.

The key contributions of this paper are as follows. We
performed an in-depth analysis of the rule sets provided
for the IDS Snort (Section II). Using this information, we
evaluated pattern matches for payload data and examined
the rules in regard to overlay protocols and current trends
in protocol development. Our findings are supported by live
data observed over a period of more than three months.
To the best of our knowledge, this has been the first in-
depth analysis of the matching position of Snort rules in
live traffic (Section III). Our main contribution is the concept
of Dialog-based Payload Aggregation. DPA allows filtering
and aggregation of payload data belonging to individual TCP
connections (Section V). We provide a thorough analysis of
DPA’s quality of the detection results and its performance
improvement by measuring the reduction of data that is
achieved in a live network. A performance evaluation of a
complete IDS using DPA concludes this part. DPA achieves
much better detection rates than approaches such as time
machine or FPA as it finds all the relevant parts in TCP session
beyond the first N bytes.

II. RULE ANALYSIS

We performed an in-depth analysis of current Snort rule sets
to get an impression how the rules are structured and what
parts of network traffic are relevant for payload-based IDS. We
use three sources for the Snort rule sets from September 2009:
a) Sourcefire (SF),1 the standard Snort rule set (5625 rules); b)
Emerging Threats (ET),2 an open source project (9369 rules);
c) BotHunter (BH),3 this project attempts to catch malware
communication in networks and uses Snort internally. Some
of its rules are taken from ET (2452 rules).

As our work is primarily based on the payload of TCP
connections, we removed all rules not matching on TCP data.
Our goal is to determine IDS-relevant data portions within
the data stream. So we dissected the context of the rules that
produced matches in our live tests. In general, rules within
the Snort IDS can be differentiated into five usage types: a)

1http://www.snort.org/snort-rules
2http://www.emergingthreats.net/
3http://www.bothunter.net/

Property Mean Minimum Maximum

Packet rate 55kpkts/s 14kpkts/s 130kpkts/s
Data rate 323MBit/s 58MBit/s 790MBit/s
Detected events 9700 1200 95300

TABLE I
STATISTICS FROM 600 10 MINUTE TRACES USED IN OUR EVALUATION

Protocol identification: Rules designed to identify specific
protocols. Often, these rules identify protocols that may violate
policies, or serve as preconditions for other application-specific
rules. Thus, they do not trigger any events. b) Application
detection: The primary purpose is to determine specific
applications. Often, peculiarities of detected applications are
matched, e.g. a specific user-agent string within a HTTP
connection. Examples are malware or online games. c) Exploit
detection: Rules detecting exploits embedded in the data stream.
d) Malware detection: Corresponding rules detect binary code
of malware that is transferred over the network. This binary
code is usually transferred either after a successful exploit, or
as attachment in other types of data. e) Protocol state detection:
Rules specialized on detecting state changes within a certain
protocol, e.g. failed logins. f) Usage detection: General usage
identification of network data, e.g. porn detection by searching
for typical texts within the data stream regardless of the used
protocol.

Internet protocols currently show a trend to multiple layers
and nested protocols. We analyzed Snort rules what types of
data were searched for by them, and where these data types
occurred. Without loss of generality, we go into more detail
for HTTP, as it is currently one the most used protocols in the
Internet [14] and often serves as overlay protocol for various
applications. Data types like XML-RPC or JavaScript are often
embedded within HTTP. Within these embedded data types,
other data types may be nested, e.g. JavaScript within HTML or
HTML within XML-RPC data. As often surrounding protocols
add prefix and postfix to the enclosed messages, we can expect,
that the “higher” a data type is stacked, the later it will occur
within the transport stream. Typical examples in the “Web 2.0”
era are social networks with embedded applications, interactive
office applications, or geo mapping services.

III. RULE MATCHING ON NETWORK DATA

Using live network data, we analyzed the matching positions
of the Snort rule sets in more detail. In the following, we
outline the test setup and discuss the obtained results.

We used live data from our University’s Internet uplink. We
captured 10 minute packet traces every 3 hours during the
span of 3 months with a packet drop rate of less than 0.01%.
Traffic statistics are shown in Table I. In total, we recorded
events from 858 rules, and 526 of these rules produced at least
10 events.

A. False-Positive Events

We observed one source of false positive events within Snort
that is often easily avoidable: loose rules [15] that not only

834

1 2 3 4 5 6 7 8

1
e
+
0
0

1
e
+
0
4

1
e
+
0
8

1
e
+
1
2

1
e
+
1
6

P=
0.0
1P=

0.5

no
 fa
lse
 po
sit
ive
s

fal
se
 po
sit
ive
s

arbitrary position

fixed position in 700/1500 byte packets

+1 byte

x 2
56

pattern size (bytes)

s
tr
e
a
m
 l
e
n
g
th
 (
b
y
te
s
)

Fig. 1. Probability of false positive pattern matches in random data

match the intended data but data from other traffic as well.
These rules sometimes had pattern matches that were too short,
and thus generated false positives.

So how many bytes of payload need to be matched to
avoid random false positive events for the rule? To answer this
question, we performed a statistical analysis of this problem,
where we only regarded the pattern size within the payload and
ignored any additional filters, such as header filters. Our results
are outlined in Figure 1: we compared multiple match cases,
a probability P = 0.01 and P = 0.5 for random false positives
and the position of the match in the packet. The position
can either be at an arbitrary position in the data stream, also
crossing packet boundaries, or fixed at a certain position within
a packet. The figure shows the probability for 700B and 1500B
packets. As an example, a 4B pattern randomly matches with
a probability of P = 0.01 in a (random) data stream of 41MiB.
To match with a probability of P = 0.5, the data stream needs
to be larger by a factor of 69. If the match is fixed to a position
within a data stream containing of 700B packets, 28GiB of
data are required for random false positives with a probability
of P = 0.01. If the data stream consists of 1500B packets,
60GiB would be required. For each additional byte in the
pattern, the amount of random traffic needed to obtain the
same probability of false positives increases by a factor of
256. Thus, if we consider the data rates of current networks,
surprisingly many false positive events will be reported for
rules that use a pattern of only 4B. In practice, some rules
alleviate this problem in part by specifying additional filters
relying on port or IP ranges.

B. URL matching

A significant amount of rules match content and use Snort’s
HTTP preprocessor to identify URLs within connection; then
only the URLs are parsed for the given string. Usually, these
URLs are located at the beginning of HTTP connections and
directly after the GET or POST keyword. Many browsers
have optimized the loading process of web pages using HTTP
pipelining. Thus, a single TCP connection may be used for
multiple HTTP requests. Obviously, we cannot assume URLs

in HTTP connections to be at the beginning of connections
(this idea has been exploited by Time Machine and FPA).

We modified the HTTP preprocessor in Snort to record
the position and length of all occurring URLs in our live
traffic to determine the usage of HTTP pipelining in current
network traffic. We processed network traces with a duration
of 60 seconds every 4 hours for several days with the HTTP
preprocessor and collected statistics for 1.3 million URLs in
36 traces. In our tests, only around 60% of all URLs were
located at the beginning of TCP connections. So if we only
used the beginning of TCP connections for intrusion detection,
we would only detect events located in the first HTTP request’s
URL and risk a significant reduction of detection quality.

IV. FPA

FPA offers a lightweight technique for aggregating a connec-
tion’s first N bytes of payload in both directions based on the
sequence number in the TCP header, or the order of packets
in UDP streams [11]. Most of the security-relevant data can
be retained this way, but for protocols that exchange control
and bulk data within the same connection in an interleaved
way, important data may be lost during the aggregation process.
DPA, as presented in this paper, extends FPA to collect most
of the security relevant events. In order to compared DPA to
approaches such as FPA and Time Machine, we briefly analyze
the detection quality of FPA.

Figure 2 visualizes both the ratio of analyzed data and
detected events with FPA in comparison to all the contained
events. The horizontal axis depicts the number of captured bytes
from the beginning of a connection that was FPA configured
to retain. The upper half of the figure shows an empirical
cumulative distribution function (eCDF) of the data ratio
selected by FPA to the original amount of data. The lower half
visualizes the ratio of detected events by Snort after performing
FPA to all events. We removed all false positives that we could
reliably identify. Multiple protocols are shown; the protocols
have been differentiated by the used ports. Interestingly, all
graphs show a rather constant behavior after a FPA length
of 1000B, except for the data ratio of IRC. FPA reduced
the amount of data with 2000B flow length to 1.0%, 1.9%,
7.1%, and 30.0% for HTTP, SSH, SMTP, and IRC, respectively.
Although the data reduction is high, Snort was able to detect
83%, 100%, 60%, and 97% of events. The overall traffic
was reduced to a portion of 1.0%, whereby only 78% of
all original events were detected. We expect similar results
from the approach used in Time Machine [10] for the same
capturing length.

V. NEW APPROACH: DPA (DIALOG-BASED PAYLOAD
AGGREGATION)

In this section, we introduce a completely new method called
Dialog-based Payload Aggregation (DPA). The key objective
of this filtering method is to keep the data reduction at a
similar level compared to FPA but to significantly increase the
detection ratio.

835

F
P
A

 /
 o

ri
g
.
d
a
ta

 (
%

)

0
2
0

4
0

FPA maximum flow length (bytes)

#
 d

e
t.
 e

ve
n
ts

 (
%

)

0 1000 2000 3000 4000

0
4
0

8
0

all

HTTP

SSH

SMTP

IRC

Fig. 2. Data reduction compared to captured events in FPA

220 mailserver ESMTP Postfix

HELO smtphost

MAIL FROM:<mail@example.de>.DATA

250 2.1.0 Ok.354 End data with <CR><LF>.<CR><LF>

250 mail.example.com

N bytes

dialog

1a

1b

2a

2b

3a

payload

Fig. 3. Dialog-based payload aggregation for TCP streams

A. Methodology

DPA operates only on network and transport layer header
information to select parts of the transferred payload. The idea
is to identify consecutive bidirectional data exchanges in one
TCP connection. In the case of HTTP, pipelined requests can
be identified by looking at the sequence numbers in the TCP
stream. If application data is transferred, the data sender’s
sequence number will be increased. When the counterpart
transfers data, the other sequence number is increased. By
monitoring both sequence numbers, a direction change in the
communication can be easily detected. The concept of DPA is
to select a fixed number of bytes and to send it to the IDS after
each direction change. Figure 3 explains the mechanism of our
method: a TCP connection consists of several dialog segments.
A dialog segment either starts at the beginning of a connection,
or after a direction change. It ends when the connection is
terminated, or at the next direction change. So, in case of
the shown SMTP connection, each request and response are
in a separate dialog segment of which the first N byte will
be captured. This way, DPA achieves much better results for
protocols that mix control and bulk data compared to FPA.

We expect that many IDS rules could be restricted to certain
positions within the flow when anchors relative to flow and
dialog start were offered by the IDS. Software communicating
over network connections often use fixed size buffers for
received data. For example, the FTP server software ProFTPD
uses in a default configuration 4KiB buffers. For the previously

detected security vulnerability4, this buffer was used and the
corresponding exploit data must have been smaller than 4KiB,
so DPA would have been able to capture the exploit when
configured with this size.

B. Dialog Analysis

To our knowledge, dialog segments within TCP connections
have not yet been evaluated for intrusion detection. Thus, we
first analyzed their general properties for different application
protocols. Figure 4 (left) shows an eCDF of the length of
dialog segments in the observed TCP connections. We evaluated
both directions of a TCP connection separately. Using port
filters, we differentiated protocols HTTP, SMTP and SSH,
but also depicted the total network traffic (“all”). All HTTP
dialog segments that were transferred to the server show the
expected behavior for HTTP requests: 80% lie in the range
of 300B to 1500B. The responses either contain an error
message, whose size is often around 300B, or bulk data with
a much higher segment size. Protocols using several rounds of
bidirectional communication, e.g. SMTP or IMAP, show a much
lower average segment size. Here, many small requests are
sent by the client, where most of them trigger short responses
like status messages from the server. Only a small percentage
of less than 5% of the dialog segments is larger than 2kB. We
also included the encrypted protocol SSH in the figure. Clearly,
the client-side is often the interactive part, as its median dialog
segment size is 65B, whereas the median of dialog segments
from the server is 110B. Server and client traffic for SSH
shows multiple spikes, for example at around 300B and 520B.
We were able to trace this back to several scans and brute
force cracking attempts that frequently repeated similar protocol
exchanges. In conclusion, we would be able to capture more
than 78% and 94% of whole dialog segments to the server and
client, respectively, using DPA to record a maximum dialog
segment size of 2kB.

We also analyzed the number of dialog segments in a
connection. Figure 4 (right) shows an eCDF of the number of
dialog segments. Here, we ignored the transfer direction. In
HTTP, more than 80% of all connections contained exactly
two dialog segments – one for the HTTP request, one for the
HTTP response from the server. All connections with more
dialog segments use pipelining, and most connections contain
a multiple of 2 dialog segments. Protocols, where the server
sends a greeting message before the client issues a command,
e.g. SMTP or FTP, show a strong preference to an uneven
number of dialog segments. In the case of SMTP, 3 to 7
dialog segments are commonly used. Although mostly the
same commands were issued, sometimes multiple commands
were sent in a row, so that individual requests were grouped
in one dialog segment. This is not the case for SSH, as almost
every command issued for establishing the secure connection
depends on the response of the previous command. In the
figure, only a few connections contained between 2 to 9 dialog
segments. The spike at 10 dialog segments was caused by the

4Bugtraq ID 44562, published on 2010-11-01

836

0 500 1000 1500 2000

0
2
0

4
0

6
0

8
0

1
0
0

dialog segment length (bytes)

e
c
d
f
(%

)

l

l

l

l

l

l

l

l
l

l l
l l l l

l

l

l

l

l
l

l
l l l

l
l l l l

l all

HTTP

SSH

SMTP

To Server

To Client

dialog segments per connection

0 5 10 15 20 25

l

l

l l

l
l

l
l

l
l

l l l l l l l l l l l l l l l l

l all

HTTP

SSH

SMTP

FTP control

HTTPS

Fig. 4. Left: Length of dialog segments; Right: Number of dialog segments
in TCP connections

already mentioned SSH scan. FTP is a rather lengthy protocol
in bidirectional communication, as for one download multiple
commands need to be issued. A typical value for current FTP
clients is 19 dialog segments, which confirms a spike at this
position in the dialog segment count in Figure 4 (right).

C. Detection Quality

In order to estimate the event detection quality using DPA,
we recorded the end position of matches in our live network
data. Figure 5 shows the results for the position relative to the
dialog segment start. A point on the horizontal axis marks a
single rule and the logarithmic vertical axis shows the end of
matches relative to the start of the dialog segment. All matches
found for a rule are summarized in a vertical line that marks the
5% and 95% quantile of the matches. The median is shown by
a black dot, cross or circle, and the line color depicts the type
of rule set the rule originated from. The majority of rules have
medians clearly within the 2000B boundary. With FPA, 52
rules violated this boundary, whereas this number was reduced
to 31 with DPA. Interestingly, the median of some rules that we
identified to produce false positive events was highly reduced.
A few true-positive events also showed a high reduction of
the match position (e.g., URI matches in pipelined HTTP
connections). Many other true-positive events either showed
a slight decrease in the match position (e.g., SMTP buffer
overflow matches) or none at all. After removing shellcode and
false-positive events, we observed only 8 rules that generated
a high amount of matches after the 2000B boundary. All of
them show unusual protocol behavior, as their rule semantics
require them to be located at the front of a dialog segment,
but their match position was later in the segment. We strongly
suspect these matches to be false-positives, but we did not
mark them as such because of ambiguities caused by trace
anonymization. If we removed all identified shellcode rules,
we would capture up to 95% of all events with a maximum
dialog segment size of 2000B.

Figure 6 visualizes both the ratio of analyzed data and
detected events with DPA in comparison to the analysis without
DPA (the same experiment has been described in Figure 2
for FPA). The graphs show quite constant behavior after a

0 100 200 300 400 500

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

rule

m
a
tc

h
 d

ia
lo

g
 e

n
d
 p

o
s
it
io

n
 (

b
y
te

s
)

l

l
lll
l

l

l

l

l l

l

l

l

l

ET

BH

SF

False Positives

Shellcode

2000 bytes

Fig. 5. End of matches in live data relative to the start of the dialog segment

D
P
A

 /
 o

ri
g
.
d
a
ta

 (
%

)

0
4
0

8
0

DPA maximum dialog length (bytes)

#
 d

e
t.
 e

ve
n
ts

 (
%

)

0 1000 2000 3000 4000

0
4
0

8
0

all

HTTP

SSH

SMTP

IRC

Fig. 6. Data reduction compared to captured events in DPA

capture length of 500B. DPA reduced the amount of data
with 2000B capture length to 2.5%, 5.4%, 7.0%, and 55.2%,
for the protocols HTTP, SSH, SMTP, and IRC, respectively.
Compared to FPA, the amount of data is 2−3 times higher
in average. For the given protocols, Snort was able to detect
99.2%, 100%, 60.1%, and 99.7% of events. The low detection
rate for SMTP is caused by shellcode matches that were
predominantly contained inside mails. The overall traffic was
reduced to a portion of 3.7%, thus achieving theoretical IDS
performance speed-up of more than 25 times assuming a linear
relationship between data rate and processing costs, while still
detecting 89.8% of all original events. Please note, that rules
producing a high number of events have a high influence on
the aggregate value in this figure.

D. Performance Evaluation

So far, we analyzed the data reduction as achieved by DPA
and estimated the theoretical speed-up. As there will be not
exactly a linear relation between data rate and computational
costs, we measured the performance gain in our testbed using
our monitoring framework Vermont in combination with Snort
as illustrated in Figure 7. We used two separate machines, a
traffic generator sending previously recorded network traffic,
and a monitoring system.5. Each test run consists of a 10min

5Intel Core2 Quad CPU @ 2.83GHz; Intel 82572EI Ethernet controller

837

DPA Packet
Generator

packets IPFIX flows packets

Vermont SnortPF_RING FIFO

buffer

Fig. 7. Test setup used for the performance evaluation

20 40 60 80 100 120 140

0
2
0

4
0

6
0

8
0

1
0
0

packet rate (kpkts/s)

d
ro

p
p
e
d
 /
 t
o
ta

l
p
a
c
k
e
ts

 (
%

)

l

ll

l

l

l

l
l

lll

l

l

ll

ll

DPA filtered

all

Fig. 8. Dropped packet ratio in 30 test runs with and without DPA

packet trace matching the given packet rate. All packets are
captured by an performance-improved version of the PCAP
library called PF RING [16]. Flow elements consisted of one
or two dialog segments of up to 2000B. After flow aggregation,
we used a buffer of 100000 elements before converting each
incoming flow record to one (or two) packets, according to
the payload contained in the DPA fields. Then these packets
were forwarded to Snort using a pipe stream for inter-process
communication, and Snort was configured to read packet data
from standard input. To compare the results with a standard
system, we also performed an evaluation using Snort that
directly captured packets from PF RING without DPA.

Figure 8 shows the relative amount of dropped packets
for different packet rates. The blue dashed line shows Snort
directly analyzing all incoming packets, the red continuous line
shows the test setup using Vermont, where only DPA-filtered
traffic is forwarded to Snort. We evaluated packet rates of
20− 140 kpkts/s (140kpkts/s transferred roughly 920Mbit/s).
Each experiment was executed 30 times. We plotted the results
in form of a boxplot. The lines connecting the boxplots connect
the median of each test configuration. Snort shows first packet
drops at 30kpkts/s, whereas Snort in combination with DPA
produced no packet losses at packet rates up to 100kpkts/s.

Our test implementation is not optimal regarding perfor-
mance, as some processing stages were performed twice, such
as stateful connection tracking with TCP reassembly in Vermont
and Snort. Furthermore, the buffer between Vermont and Snort
only held 4KiB, which is too small for our test data rates. We
expect that by removing these deficiencies we would achieve
even higher speed-ups than 300%.

VI. CONCLUSION

We performed a thorough analysis of payload filtering
methods that are suited for network-based IDS. Using extensive
traces from a live network data and three different Snort rule
sets, we evaluated detection results applying FPA to the input

data. Based on our findings, we suggest a new aggregation
method, Dialog-based Payload Aggregation, that exploits
intrinsic application protocol semantics to extract security-
relevant portions of the payload for subsequent analysis. This
method is very lightweight, as the decision process only uses
network and transport header data from captured packets.
According to experiments using our traces, we could filter
out 96% of all network data, while retaining 89% of all events
reported by Snort.

REFERENCES

[1] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,” in
13th USENIX Conference on System Administration (LISA 1999), Seattle,
WA, November 1999, pp. 229–238.

[2] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Elsevier Computer Networks, vol. 31, no. 23-24, pp. 2435–2463,
December 1999.

[3] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
evasion, traffic normalization, and end-to-end protocol semantics,” in
10th USENIX Security Symposium, Washington, DC, August 2001.

[4] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational
experiences with high-volume network intrusion detection,” in 11th ACM
Conference on Computer and Communications Security (ACM CCS 2004).
Washington, DC: ACM, October 2004, pp. 2–11.

[5] B. Claise, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” IETF, RFC
5101, January 2008.

[6] K. Namjoshi and G. Narlikar, “Robust and Fast Pattern Matching for
Intrusion Detection,” in 29th IEEE Conference on Computer Communi-
cations (INFOCOM 2010). San Diego, CA: IEEE, March 2010.

[7] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the Big Bang: Fast
and Scalable Deep Packet Inspection with Extended Finite Automata,”
in ACM SIGCOMM 2008, Seattle, WA, August 2008, pp. 207–218.

[8] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis, “Regular Expression Matching on Graphics Hardware
for Intrusion Detection,” in 12th International Symposium on Recent
Advances in Intrusion Detection (RAID 2009), vol. 5758, Saint-Malo,
France, September 2009.

[9] P. Tune and D. Veitch, “Towards Optimal Sampling for Flow Size
Estimation,” in 8th ACM SIGCOMM Conference on Internet Measurement
(IMC 2008). Vouliagmeni, Greece: ACM, October 2008, pp. 243–256.

[10] S. Kornexl, V. Paxson, H. Dreger, R. Sommer, and A. Feldmann,
“Building a Time Machine for Efficient Recording and Retrieval of
High-Volume Network Traffic,” in 5th ACM SIGCOMM Conference on
Internet Measurement (IMC 2005). Berkeley, CA: ACM, October 2005,
pp. 267–272.

[11] T. Limmer and F. Dressler, “Flow-based Front Payload Aggregation,” in
34th IEEE Conference on Local Computer Networks (LCN 2009): 4th
IEEE LCN Workshop on Network Measurements (WNM 2009). Zurich,
Switzerland: IEEE, October 2009, pp. 1102–1109.

[12] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in IEEE/IST
Workshop on Monitoring, Attack Detection and Mitigation (MonAM
2006). Tübingen, Germany: IEEE, September 2006, pp. 62–65.

[13] T. Limmer and F. Dressler, “Dialog-based Payload Aggregation for
Intrusion Detection,” in 17th ACM Conference on Computer and
Communications Security (CCS 2010), Poster Session. Chicago, IL:
ACM, October 2010, pp. 708–710.

[14] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On Dominant
Characteristics of Residential Broadband Internet Traffic,” in 9th ACM
SIGCOMM Conference on Internet Measurement (IMC 2009). Chicago,
IL: ACM, November 2009, pp. 90–102.

[15] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” in 10th ACM Conference on Computer
and Communications Security (ACM CCS 2003). Washington, DC:
ACM, October 2003, pp. 262–271.

[16] L. Deri, “Improving passive packet capture: beyond device polling,”
in 4th International System Administration and Network Engineering
Conference (SANE 2004), Amsterdam, The Netherlands, September 2004.

838

