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Abstract—Data center networks often use densely intercon-
nected topologies to provide high bandwidth for internal data
exchange. In such network, it is critical to employ effective
load balancing schemes so that the bandwidth resources can be
fully utilized. A simple and widely adopted scheme is equal-
cost multi-path (ECMP) routing, which is generally supported
by commodity switches and routers. However, research shows
that ECMP cannot always ensure even traffic distribution among
multiple paths. Consequently, ECMP cannot guarantee optimal
resource utilization. We propose a scheme to complement ECMP
with per-flow reroute. The basic idea is to perform ECMP-
based load balancing by default. When a congestion occurs
on a certain link, we dynamically reroute one or a few big
flows to alternative paths to alleviate the congestion. The main
contribution of our research is to design a scheme that enables
per-flow reroute without introducing any modifications to IP
switches and routers. All the flow-based operations and reroute
functionalities are implemented in software that are installed on
end hosts and centralized controllers. We call this scheme PROBE
(Probe and RerOute based on ECMP). PROBE uses a traceroute-
like approach to discover alternative paths and modifies packet
headers to enable flow-based reroute. We show that PROBE
is a low cost, low complexity and feasible scheme that can be
easily implemented in existing data center networks that consist
of commodity switches and routers.

Index Terms—reroute; ECMP; data center network; load
balancing; flow-based routing

I. INTRODUCTION

The purpose of load balancing in communication networks

is to route traffic across multiple paths in a good way so that

the work load on the links and/or nodes are evenly distributed.

In practice, people usually focus on links to design and

evaluate load balancing. Typically, routing in an autonomous

system (AS) is based on shortest path algorithms, e.g., open

shortest path first (OSPF) [14]. Without load balancing over

multiple paths, the shortest path from a source to a destination

is calculated in advance, and all the according traffic is directed

through this shortest path.

Data center networks often use densely interconnected

topologies to provide large bandwidth for internal data ex-

change. For example, fat-tree and Clos networks are widely

B

D

E

J

H

A

C

G

F

I

Fig. 1. Traffic load balancing.

adopted where a large number of paths exist between each

pair of nodes [6], [15]. The newly proposed data center

network topologies, including DCell [8], BCube [7], DPillar

[11], also share the feature of dense interconnections. In

this type of networks, using single-path routing without load

balancing cannot fully utilize the network capacity. As a result,

congestion may occur even if the network still has abundant

unused bandwidth. In Fig. 1, if two shortest paths A-E-F-D and

G-E-F-J are selected for single-path routing, link E-F may be

overloaded even if paths A-B-C-D and G-H-I-J have unused

bandwidth. This problem can be alleviated using equal-cost

multi-path (ECMP) routing [9]. With ECMP, multiple shortest

paths are calculated from a source to a destination, and traffic

is distributed across these equal-cost paths to achieve load

balancing. In Fig. 1, if A-E-F-D and A-B-C-D are used to

carry traffic from A to D, while G-E-F-J and G-H-I-J are used

to carry traffic from G to J, the network utilization will be

greatly improved. With ECMP, each router may have multiple

output ports for the same destination prefix, which lead to

multiple paths. When a packet arrives, the router calculates a

hash value based on the packet header and select one of the

feasible output ports based on the hash value. It is common

practice to use the 5-tuple header fields [source IP address,

destination IP address, protocol type, source port, destination

port] to calculate the hash value. With this approach, packets

belonging to the same flow follow the same path, thus avoiding

out-of-order delivery.
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However, using ECMP cannot guarantee good load balanc-

ing because of two major reasons. First, hash based traffic

distribution is per-flow based, not per packet based. Thus the

result is to balance the number of flows on different paths,

not the bit rate. Even if two paths carry the same number

of flows, the traffic loads may not be equal since the flows

have different bit rates [1]. Second, from the network-wide

viewpoint, using ECMP may still lead to overload on certain

links. In Fig. 1, if A–D and G–J evenly distribute their traffic

between the two paths, the load on link E-F would be twice

of the load on any other links. One may think about adjusting

the hash function in a sophisticate way to achieve network-

wide load balancing. Unfortunately, this is infeasible because

the traffic fluctuates all the time and route recalculation occurs

each time there is a topology change. Therefore, tuning hash

functions can barely follow such dynamic changes, let aside

the considerable complexity.

A common approach to solve the problems of ECMP is

flow-based routing. OpenFlow [13] defines a framework where

switches and routers maintain flow tables and perform per-flow

routing. Such flow tables can be dynamically modified from a

remote station. Hedera [1] shows how to use OpenFlow in data

center networks to achieve load balancing. There is no doubt

that OpenFlow is a powerful scheme with great potential.

However, it is not supported by existing commodity switches

and routers, and the flow table configuration and maintenance

are non-trivial.

In this paper we present a scheme called PROBE (Probe

and RerOute Based on ECMP). PROBE exploits the multipath

routing capability provided by ECMP to realize flow-based

rerouting, thus enabling fine granular traffic control. The best

advantage of PROBE is that it achieves flow-based rerouting

without requiring flow tables in the routers. Actually it does

not require any modifications of the existing routers. Instead,

all the operations are performed at the end hosts. With this

property, PROBE can be easily deployed in existing data center

networks to achieve performance improvement.

II. ARCHITECTURE OF PROBE

A. Problem Description

We consider a network that employs ECMP for load balanc-

ing but do not introduce any restrictions to the hash function

that is used by each router to determine traffic distribution.

Consider the situation in Fig. 2 where a big flow from host

s to host d experiences congestion on link B-C, our goal is

to design a scheme that can discover an alternative path (i.e.,

either A-B-F-D or A-E-F-D in this example) and reroute the

flow through this path to bypass the congested link.
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Fig. 2. Example of PROBE. By translating ports [10000, 5000] to

[15008,9000] in packet headers, the source agent reroutes the flow from the

original path to alternative path 2. The destination agent translates [15008,

9000] back to [10000, 5000].

B. Overview of PROBE

The essence of PROBE is to let the source host probe the

network to discover alternative paths using a traceroute-like

probe [12]. Since routers perform multi-path routing based on

the 5-tuple header fields, our scheme conduct multiple probes

with various 5-tuple field values to obtain alternative paths.

Among the 5-tuple fields, we only change the protocol port

numbers and keep the other fields unchanged. From the probe

results, the host is able to create a table indicating the 5-

tuple values for each alternative path. When the host needs

to send packets along a specific alternative path for rerouting,

it only needs to modify the 5-tuple header fields with the

corresponding values from the probe results. Fig. 2 shows an

example.

1) Set up: A TCP flow from s to d is currently taking A-B-

C-D with source/destination ports [10000,5000]. Hosts s

and d run an agent software that implements the PROBE

scheme.

2) Probe: The agent software in host s starts multiple

traceroute-like probes to discover alternative paths by

setting the port numbers to various values. The IP

addresses and protocol type are set to the same values

as the original flow. From the probe responding packets,

the source agent software finds that ports [15000,9000]

corresponds to path A-B-F-D, while [15008,9000] cor-

responds to path A-E-F-D.

3) Reroute: When the original flow needs to be rerouted to

avoid the congestion on link B-C, the agent software in

host s creates an entry in its flow table to translate ports

[10000,5000] to [15008,9000]. This entry is sent to the

agent software at host d before any packet is rerouted.

After that, the source agent translates each packet with

ports [10000,5000] to [15008,9000] and sends it to the

network. The routers perform ECMP-based multipath

routing and deliver these packets along A-E-F-D to host

d, not aware of the port translation. The destination agent

at host d performs a simple table lookup and translate
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Fig. 3. Architecture of PROBE.

the ports back to the original values. This is similar

to network address translation (NAT) [5]. Finally, the

packets are delivered to the applications as usual.

C. Technical Details

The architecture of PROBE is illustrated in Fig. 3. Flow

detection, path probe, and flow reroute are function modules

in end hosts and are implemented as part of the agent software.

The path monitoring and reroute decision-making can be im-

plemented either in a centralized controller or distributed in the

agent software. Due to efficiency and simplicity, centralized

controllers have been widely adopted in enterprise networks

and data centers [1], [3], [6], [15]. In this paper, we focus on

the implementation of PROBE with a centralized controller.

The details of the function modules are explained below.

• Flow detection: Each end host monitors its out going

traffic to identify big flows. A flow is defined using

the 5-tuple header fields. A big flow is defined as a

packet stream that lasts longer than a predetermined

duration threshold and has a bit rate that is higher than

a predetermined rate threshold. Reroute is performed

only to big flows because moving such flows is effective

to alleviate congestion. In contrast, small flows either

last a short period or have low bit rate. Rerouting such

flows is less effective to resolve congestion and improve

quality of service. Flow detection can be performed

using various methods. One typical approach is based on

flow sampling, where packets are periodically sampled to

measure/estimate the rate of flows, such as sFlow [16] and

Cisco NetFlow [4]. While flow sampling may generate

considerable error for small flows, it is generally good

enough to detect big flows since such flows have more

packets and have a higher chance of being sampled.

• Path probe: Since end hosts do not participate in routing,

they do not have the topology information and routing in-

formation that are necessary for flow rerouting. To resolve

this problem, we let end hosts obtain path information by

probing the network. The approach we take is similar to

traceroute. The software agent in the source node initiates

multiple probes. Each probe is different from the other in

that the probe packets carry different 5-tuple header field

values. Since the routers hash the 5-tuple header fields to

perform load balancing using ECMP, it is very likely that

packets belonging to different probe sessions may take

different paths. Similar to traceroute, the agent software

sends multiple packets with the TTL fields set to 1, 2, 3,

etc, thus getting feedback packets from the routers, with

which the agent is able to reconstruct the multiple paths

being maintained in the network. Unlike conventional

traceroute, the agent software generates probe packets

with TCP/UDP headers, just like tcptraceroute [17] and

Paris traceroute [2], which is necessary since we rely on

port numbers to achieve path control. We would like to

clarify that path probe is performed only after a big flow

is detected. For small flows, the conventional routing is

applied. Since the number of big flows is a small fraction

of the total traffic [10], the probe does not generate too

much overhead traffic. We discuss this and several other

critical issues in the next section.

• Path monitoring: In a data center network (or enterprise

network) that employs centralized controllers, the traffic

load of each link is constantly measured and reported

to a controller. Therefore, it is straightforward to exploit

this functionality to let the controller make rerouting

decisions. After a host detects a big flow and completes

path probe, it reports the big flow and the alternative

paths to the controller, as illustrated in Fig. 4. The

routers perform periodic measurement and reports the

load on each link to the controller. When the load on

a link exceeds a threshold, the controller picks a big

flow that traverses this link and ensures that it has an
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Fig. 4. Reroute decision-making using centralized control.

alternative path with available bandwidth for rerouting.

After that, the controller notifies the source host to start

the rerouting. The notification includes the flow ID and

the path ID, with which the host agent software knows

what values to use for port translation.

• Flow reroute: After a host receives a reroute notification

from the controller, it first creates a translation bind

between the original ports and the new ports and sends

the information to the destination agent. The source and

destination agents maintain a TCP connection to ensure

reliable message exchange. After that, the big flow is

rerouted simply by performing port translations at source

and destination hosts. The IP address and protocol values

are not changed to ensure the correctness of packet

delivery.

D. Advantages of PROBE

The most prominent advantage of PROBE is that it enables

explicit path control to avoid congested links without introduc-

ing any modifications to the routers. All the function modules

are implemented in software and are running on end hosts and

centralized controllers. PROBE can be easily deployed in an

existing network using commodity IP routers and switches. It

is a low cost, low complexity, and practical solution.

PROBE performs flow-based traffic control. Unlike Open-

Flow [13] and Ethane [3], it does not require flow tables in

switches and routers. While the software agents need to main-

tain flow-based lookup tables, the complexity is substantially

lower because the table size is small, the update is simple, and

the maintenance is totally distributed.

PROBE exploits the feature of ECMP, and complements it

to achieve better load balancing. While conventional ECMP

is simple, it does not achieve even traffic distribution and

does not offer per-flow routing controllability. PROBE runs

on top of ECMP and has the ability to fine tune the routing

of big flows to fully utilize the resource utilization. PROBE

helps to achieve great performance without introducing high

complexity.

III. DESIGN CONSIDERATIONS

A. Path Probing

One may wonder if the path probe would take too much time

to meet the timing requirement of flow reroute. Conventional

traceroute probes a path in a hop-by-hop manner. It starts by

setting TTL=1 to discover the first router, and then increments

the TTL value by one in each time. Overall the delay increases

with the hop count. PROBE takes several methods to reduce

the delay. The first method is to probe early. Probes are trig-

gered immediately after a big flow is detected, most likely this

is before congestion occurs. The second method is to probe

multiple hops in parallel, that is, the source agent software

sends out multiple packets with the TTL fields set to 1, 2, 3,...

Consequently, the probe delay does not increase with the hop

count. The third method is to probe multiple paths in parallel.

E.g., we can start 10 probes (with 10 different port pair

values) all at once. The last method is to configure the routers

to respond to such probe packets quickly. Our measurement

shows that even low-end commodity routers can easily reach

sub millisecond level delay. While certain ISPs restrict the

response rate for traceroute due to security considerations, it

should not be a problem for data center networks where the

hosts are trusted parties. Also the propagation delay is trivial

in data center networks where the physical distance is short.

We believe for data center networks it is feasible to achieve

sub 100 ms probe delay. Noting that big flows often last for

seconds or even more than 10 seconds [10], 100 ms is a fairly

reasonable number.

B. Agent Communication and Caching

The source and destination hosts maintain a permanent TCP

connection to exchange control messages. Once a rerouting

decision is made, the source host creates a port translation rule

and sends it to the destination agent for reverse port translation.

Therefore, the source and destination agents have consistent

translation lookup tables. The source agent can cache the

results of a path probe operation for later use, so that it does

not need to perform probe frequently to the same destination

host. To keep the table up-to-date we allow the entries to age

out.

C. Traffic Overhead

While each probe generates extra overhead traffic, it does

not introduce impact to data center networks for several rea-

sons. First, the probe is triggered only by big flows. According

to traffic measurement [10], only a small fraction of flows

(about 20%) are big flows while most flows are small flows.

Second, the PROBE agents cache path information for later

use, thus they do not probe the same destination frequently.
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Fig. 5. A multi-stage topology (R = 3, T = 3).

Third, the probe packets are small, containing a 20-byte IP

header and a 20-byte TCP header (or a 8-byte UDP header).

So the total short-term peak rate bound of a probe is

r = N ·H · L/Δ, (1)

where N is the number of parallel probe sessions, H is the

maximum hop count, L is the length of a probe packet, and

Δ is the probe duration.

When a physical computer is virtualized into multiple vir-

tual machines, the overhead can be reduced by consolidating

the probe operation. E.g., we can integrate the PROBE agent

with the hypervisor so that all the virtual machines can share

the same probe results.

IV. PERFORMANCE EVALUATION

In this paper we focus on the design of PROBE and its

feasibility. While the evaluation of load balancing performance

improvement using PROBE is an important issue, we leave it

to our future research. In this section we mainly study the

effectiveness of path probe. Noting that ECMP distributes

packets randomly (using hash function), it is possible that

two or more probe operations happen to give the same path.

Intuitively, in a data center with rich connectively (e.g., fat

tree or Clos network topology), it is fairly easy to discover

a number of different paths (not necessarily disjoint, though)

using multiple probe. We perform in-depth study of this issue

in the follows.

For simplicity, we conduct performance evaluation in a

regular topology shown in Fig. 5, where the source node s

connects to the destination node d through a R-row, T -stage

Clos network.

A. Analysis

Assume all the links have equal cost, it is easy to see that

the total number of equal-cost shortest paths from s to d is

RT+1. We assume all the routers perform load balancing using

independent, uniformly distributed hash functions. Given an

existing path, the probability that a random probe finds a non-

overlapping path is

p1 = 1− 1

RT+1
. (2)

Therefore, the average number of probes needed to find a

different path is

M1 =
∞∑

m=1

mp1(1− p1)
m−1 =

1

p1
=

RT+1

RT+1 − 1
. (3)

Since data center networks are densely interconnected, the

total number of path RT+1 is a large number. Therefore, M1

is close to 1, which means it is very easy to find a different

path in just a few probes.

The above analysis does not specifically require the new

path to be link-disjoint from the existing one. Although

PROBE does not require the reroute to be link-disjoint, it is

interesting to study the probability. Based on simple analysis,

we find the probability that a random probe gives a link-

disjoint path is

p2 =
R− 1

R
(
R2 − 1

R2
)T . (4)

Similarly, the average number of probes needed to find a link-

disjoint path is

M2 =

∞∑

m=1

mp2(1− p2)
m−1 =

1

p2
=

R

R− 1
(

R2

R2 − 1
)T . (5)

For a small network with R = 10 and T = 5, the average

number of probes is M2 = 1.16.

B. Simulation

With the above analysis, we have the intuition and with a

few probes, we should be able to discover enough alternative

paths to get prepared for reroute. We conduct computer simu-

lations to obtain the number of different paths being discovered

vs the number of probes in various size topologies. The hash

function we use in the routers is salted CRC16, where each

router uses a random salt to avoid correlation between different

routers in traffic distribution. Note that this is a necessary

requirement by the native ECMP to achieve load balancing,

not a requirement by PROBE.

In the ideal case, k probes should discover k different

paths. In practice, the number of paths is most likely less

than k. In our simulation, we perform a sequence of probes

to observe the number of paths being discovered. We conduct

such experiment multiple times to get the average numbers and

worst numbers. Fig. 6 shows the results for a small network

with 5 rows and 4 stages. With 20 probes, we are able to find

more than 19 alternative paths on average. In the worst case,

we find 17 alternative paths. Fig. 7 shows a large network

with 20 rows and 6 stages. With 20 probes, we always find

20 different alternative paths.
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Fig. 6. Number of alternative paths discovered (R = 5, T = 4).
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Fig. 7. Number of alternative paths discovered (R = 20, T = 6).

V. CONCLUSIONS AND FUTURE WORK

We present a scheme called PROBE to enable flow-based

reroute in IP network that uses ECMP. ECMP performs rough

and static load balancing, thus cannot achieve even traffic

distribution. The proposed scheme complements ECMP to

perform dynamic flow-based reroute, thus achieving good load

balancing and improving resource utilization. A prominent

advantage of PROBE is that although it performs per-flow

reroute, it does not require flow tables in IP routers. Everything

is implemented in software that can be easily installed on

host servers and controllers. Therefore, PROBE is a low-

complexity, low-cost, and low-maintenance scheme, especially

for data center applications. Since PROBE does not introduce

any modifications to the routers, it can be used to upgrade

existing data center networks for performance enhancement.

This paper focus on the design and feasibility of PROBE,

in our future research we will investigate the application of

PROBE for network performance improvement and will build

a testbed to demonstrate the design.
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