
Use of Devolved Controllers
in Data Center Networks

Adrian S.-W. Tam Kang Xi H. Jonathan Chao

Department of Electrical and Computer Engineering
Polytechnic Institute of New York University

Email: adrian@antioch.poly.edu, kxi@poly.edu, chao@poly.edu

Abstract—In a data center network, for example, it is quite
often to use controllers to manage resources in a centralized man-
ner. Centralized control, however, imposes a scalability problem.
In this paper, we investigate the use of multiple independent
controllers instead of a single omniscient controller to manage
resources. Each controller looks after a portion of the network
only, but they together cover the whole network. This therefore
solves the scalability problem. We use flow allocation as an
example to see how this approach can manage the bandwidth use
in a distributed manner. The focus is on how to assign components
of a network to the controllers so that (1) each controller only
need to look after a small part of the network but (2) there is at
least one controller that can answer any request. We outline a
way to configure the controllers to fulfill these requirements as
a proof that the use of devolved controllers is possible. We also
discuss several issues related to such implementation.

I. INTRODUCTION

Among recent years’ literature on data center networking,
using a centralized controller for coordination or resource
management is a common practice [1], [2], [3], [4], [5], [6],
[7]. In [5], for example, a master server is used to hold the
metadata for a distributed file system. In another example,
[1], a flow scheduling server is responsible for computing a
new route for a rerouted flow at real time. In [3], a controller
is also used to enforce a route for a packet so that its
use of the network compliances with the policies. Using a
centralized controller not only makes the design simpler, but
also sufficient. In [5], the authors claim that a single controller
is enough to drive a fairly large network and the problem of
single point of failure can be mitigated by replication.

Nevertheless, the use of a centralized controller subjects
to scalability constraints. Usually the scalability problems are
solved by load balancing. For example, replicating the whole
database to multiple servers is a common way to load balance
MySQL servers [8]. However, if the scalability problem is
caused by too much data stored in a controller so that its
response time is degraded, balancing load by identical con-
trollers cannot solve the problem. As the data center network
grows larger and larger, we can expect to have such problem
in the near future. Therefore, it is interesting to study an
alternative solution to a single centralized controller.

We study the use of devolved controllers in this paper. They
together function as a single logical centralized controller but
none of them have the complete information of the whole

data center network. This is beneficial, for example, when the
controllers are supposed to provide real time computations and
too much data would cause the computation slow.

We take the following flow route assignment as an example
to see how we can use devolved controllers: Whenever a flow,
identified by a source and a destination node in the network, is
to be established, the sending node will query the controllers
for the route it should use to avoid congestion. The controllers
are therefore responsible to monitor the network to assist the
route selection. If the network topology were too large, the
response time would be too long to be useful. Thus instead of
a single omniscient controller to cover the whole network, we
use multiple ‘smaller’ controllers so that each of them covers
a partial topology only. When a controller is asked for a route,
it responds with the topology data it has.

Note that this paper is not about route optimality or routing
protocols, but to show that an omniscient controller is not the
only solution. The novelity of this paper is on the concept of
devolved controllers, which eliminates the scalability problem
of traditional omniscient controller.

Our work is on the control aspect of data center networks.
In recent years, there are many literatures that focus on control
plane design in networks. Examples are OpenFlow [9], NOX
[10] and Ethane [3]. To address the scalability issue of the
controllers in these designs, their developers proposed [11]
to partition the controllers horizontally (i.e. replication of
controllers) and vertically (i.e. each controller serve a part
of the network). While horizontal partitioning is trivial, this
paper explore into the ways of vertical partitioning.

In the rest of this paper, we describe an example on
controller use in section II and provide heuristic algorithms
in section III on how to configure the controllers. Evaluation
is provided in section IV and discussion on the use of devolved
controllers in section V.

II. PROBLEM STATEMENT

On a network represented by a connected graph G = (V,E),
a flow is identified by the ordered pair (s, t) where s, t ∈ V .
On such a network, there are q controllers. Each of them is
managing a portion of the network, represented by a subgraph
of G. We say a controller that manages G′ = (V ′, E′) covers a
node v ∈ V or a link e ∈ E if v ∈ V ′ or e ∈ E′, respectively.
Upon a flow is going to be established, the source node s

IEEE INFOCOM 2011 Workshop on Cloud Computing

602

A B

C

a

bc

Fig. 1. A network managed by three controllers

queries the controllers for a route to destination t. Among the
q controllers, at least one of them responds with a path p that
connects s to t, which is the route for this flow. TABLE I
summarizes the terms used in this paper.

The controllers are supposed to respond to the flow route
query in a very short time. Therefore, computationally inten-
sive path-finding algorithms are not viable. Furthermore, we
have to ensure at least one the q controllers can provide a route
for any source-destination pair (s, t). One way is to have all
routes pre-computed. Assume for any ordered pair (s, t), we
compute k different paths p1, . . . , pk that join s to t. We call
the set M = {p1, . . . , pk} as a k-multipath. Then, we install
the multipath into a controller. Upon the query is issued, the
controllers will return the least congested one of the k paths.

Fig. 1 gives an example of a network with three controllers.
The part of the network that a controller covers is illustrated
by a dotted ellipse. Precisely, there is a controller that covers
all the routes between nodes in regions A and B as well as the
routes within those regions; another controller covers that of
regions A and C and yet another is for regions B and C. In this
way, none of the controllers monitor every spot in the network
but they together can respond to any request from any node.
For instance, the route illustrated in Fig. 1 is entirely within
the jurisdiction of controller a. So a is the one to provide
this route upon request. When the network grows, we can
install more controllers to cover the network so that none of
the controllers need to manage a region of too large in size.

Assume we have all the paths pre-computed, the immediate
questions are then

1) How to optimally allocate the multipaths into the q
controllers? We define the optimality as the smallest
number of unique links to be monitored by the controller.
In other words, we prefer the controller to cover as small
portion of the network as possible.

2) If no controller can monitor more than N links on the
network, what is the number of controllers needed?

III. APPROXIMATE SOLUTION

We first consider the problem of optimal allocation of the
multipaths into q controllers.

For n = |V | nodes on the network, there are n(n − 1)
different source-destination pairs. This is also the number of
multipaths to be pre-computed as mentioned in section II.
It is a NP-hard problem to find the optimal allocation to

(s, t) Source-destination pair
flow A data stream from a source node to destination node
path/route A path that connects two nodes
multipath A set of paths that each of them connects the same pair

TABLE I
DEFINITION OF TERMS USED IN THIS PAPER

q controllers1. The size of the solution space for allocating
n(n − 1) multipaths to q controllers is given by the Stirling
number of the second kind [13]:

1

q!

q∑
j=0

(−1)j
(
q

j

)
(q − j)n(n−1)

It becomes intractable quickly for a moderately large network.

A. Path-partition approach

Instead of looking for a global optimal solution, we devel-
oped a heuristic algorithm to obtain an approximate solution.
The algorithm is in two parts: Firstly it enumerates all the
k-multipaths for all source-destination pairs (s, t). Then, it
allocates each multipath into one of the controllers according
to a cost function. The multipaths are pre-computed with no
knowledge of where they are to be allocated to the controllers.
We call this the path-partition approach:

Algorithm 1: Path-partition heuristic algorithm
Data: Network G = (V,E), q = number of controllers

1 foreach s, t ∈ V in random order do
/* Constructing a k-multipath from s to t */

2 M := k paths joining s to t;
/* Allocate into a controller */

3 for i := 1 to q do
4 ci := cost of adding multipath M to controller i
5 end
6 Allocate multipath M to the controller j = argmin cj
7 end

We implemented the multipath enumeration in algorithm 1
(line 2) after [14]. We find a path from s to t using Dijkstra’s
algorithm with unit link weight for each link in E. Then,
the links used in this path have their link weights increased
by an amount ω. The Dijkstra’s algorithm and link weight
modification are repeated until all k paths are found. It is
a straightforward algorithm to find k distinct paths from s
to t by using Dijkstra’s algorithm iteratively with modified
link weight. The link weight increase is suggested in [14] to
be ω = |E| to prefer as much link-disjointness as possible
between paths. When a short route is preferred, however, ω
should set to a small value. We use the latter approach.

Other methods to compute multipaths in algorithm 1 are
available, such as [15] or [16]. The way the multipaths are
found does not affect the discussion hereinafter.

1The problem in concern is an extended problem of graph partitioning. It
is well-known in algorithmic graph theory that graph partitioning is NP-hard.
Using heuristic algorithms such as Kernighan-Lin [12] is the standard way to
solve graph partitioning problems.

603

The essential part of the heuristic algorithm is the lines 3–6.
It allocates the multipaths to controllers one by one according
to a cost function. The goal of the cost function is to allocate
the multipath into controllers such that the maximum number
of links to be monitored by a controller is minimized. With
that in mind, we established the following heuristic:

1) A multipath shall be allocated to a controller if that
controller already monitors most of the links used by
that multipath; and

2) In an optimal allocation, the total number of links
monitored by each controller shall be roughly the same.

Therefore, we define the cost function in line 4 as

ci = ανi(M) + µi

where µi is the number of links already monitored by con-
troller i at the moment and νi(M) is the number of links in
the multipath M that is not yet monitored by that controller,
i.e. if M is allocated to controller i, the total number of
links monitored by controller i would become µi + νi(M).
Parameter α adjusts their weight in the cost function. When
α ≈ 0, we ignore the benefit of reusing existing links in a
controller. When α ≈ ∞, however, we do not require the
controllers to be balanced. This usually yields the result that
almost all multipaths are allocated to the same controller,
which can be explained by the Matthew’s effect on the
allocation process of lines 3–6. We empirically found that α
between 4 to 8 gives a good result. We set α = 4 in our
experiments but the wide range of appropriate values for α
suggests that it is not very sensitive.

B. Partition-path approach

Another way to allocate multipaths into controllers, the
partition-path approach, is available. Its idea is that, if a
controller is already monitoring certain links, we can find
the k-multipath between the source-destination pair (s, t) that
uses those links as long as it is possible. Therefore, in this
approach, we first partition the links into q controllers as
their preferred links. Then the multipath connecting s to t
is computed individually in each controller, with preference
given to certain links. Algorithm 2 illustrates the idea.

The algorithm begins with a procedure to randomly partition
the set of links E into the q controllers such that each
controller i covers a subset Ei ⊂ E preliminarily (lines
1–5). Then for each source-destination pair (s, t), it finds
a k-multipath on each controller i with the preference to
using links in Ei. The same path-finding algorithm is used
in Algorithm 2 as in Algorithm 1. Note that, the links in Ei
affects the path-finding algorithm by changing the initial link
weight only. In the other part of the algorithm, such as the cost
function in line 10, it is not involved. The same cost function
as in section III-A is used here.

IV. PERFORMANCE

We applied the heuristic algorithms on different topologies
from the Rocketfuel project [17] to evaluate its performance.
We use Rocketfuel topologies as there is no detailed data

Algorithm 2: Partition-path heuristic algorithm
Data: Network G = (V,E), q = number of controllers
/* Partition links to controllers preliminarily */

1 foreach i := 1 to q do Ei = ∅
2 foreach e ∈ E do
3 i := random integer in {1, . . . , q}
4 Ei := Ei ∪ {e}
5 end

/* Enumerate multipaths and allocate into controllers */
6 foreach s, t ∈ V in random order do
7 foreach i := 1 to q do

8 Set link weight w(e) =

{
1 for all e ∈ Ei

ψ for all other e ∈ E

9 Mi := k paths joining s to t
10 ci := cost of adding multipath Mi to controller i
11 end
12 Allocate multipath Mj to controller j = argmin cj
13 Ej := Ej ∪ {e : for all links e in Mj}
14 end

.

.14

.26
.6

.10

.3

.13

.15

.8
.4 .7

.25

.11

.12

.27

.0

.17

.18

.2

.16

.23

.1

.9

.24

.5 .21

.19

.20

.22

Fig. 2. Topology of an irregular network with 28 nodes and 66 links.

center topologies available publicly. We also evaluate the
algorithm with a fat tree topology, which is likely to be used
in data center networks, in section IV-D.

A. Size of controllers

We use q = 4 controllers on a network of 28 nodes and 66
links. The topology is illustrated in Fig. 2. One configuration
of the four controllers computed by algorithm 1 is depicted in
Fig. 3, with each controller monitoring 45–47 links. From the
figure, we found quite significant overlap on the nodes and
links monitored by each controller. Some links appeared in
all controllers, as they are critical links for the connection
of the network. Some other links are less important and
appeared in one controller only. The large number of overlap
is unavoidable when devolved controllers are used. In fact,

Theorem 1: When devolved controllers are used, there is
either a controller that covers all nodes, or any single node is
covered by more than one controller.
Since for any node v, if it is covered by only one controller,
then for any flow (v, u) to be routable, node u must also
covered by that controller. Therefore that controller must cover
all nodes on the network. �

604

.

.

.
.

.

.

.

.

.. .

.

.
.

.

.
.

.

.
.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.

.. .

.

.
.

.

.
.

.

.
.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.

.. .

.

.
.

.

.
.

.

.
.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.

.. .

.

.
.

.

.
.

.

.
.

.

.

.

.

. .

.
.

.

Fig. 3. Links monitored by each of the four controllers as suggested
by algorithm 1. Critical links are more likely to be included in multiple
controllers, whereas less important links are appeared in only one controller.

In other words, there must be significant overlap if we
want to reduce the scope of the network that each controller
monitors. In fact, we can reduce the number of links monitored
by each controller if we use Algorithm 2. Applying to the same
topology in Fig. 2, each controller monitors only 29–31 links,
which is significantly less. This better result, however, comes
with the price that the route found by Algorithm 2 is longer.
The average hop count of a path (the mean number of hops
over all kn(n − 1) paths computed) is 3.5 in Algorithm 2
whereas that in Algorithm 1 is 2.6. The lengthened route may
not be favorable in data center networks, however.

To compare the result, we computed a configuration with
the same set of multipaths using the time-consuming simulated
annealing process2. The result, presented in Fig. 4, turns out is
no better than that obtained by the heuristic algorithms despite
the longer time it took. Indeed, the heuristic algorithms often
gives a slightly better solution than simulated annealing.

We also applied the algorithm on several different topologies
of different number of nodes and links from Rocketfuel. Due
to space limitation, we do not show their topologies here but
TABLE II shows the maximum number of links covered by
a controller resulted from the heuristic algorithm compared to
that from simulated annealing. It confirms that the controllers
covers around 60-80% of links on the network when q = 4

2The simulated annealing process is to replace the loop in lines 3–6 only
in Algorithm 1. The multipath M in the comparison are exactly the same
for a fair contrast. It may seem counter-intuitive that the well-established
simulated annealing technique does not produce better solution. Partly this can
be attributed to the choice of parameters such as the cooling function used.
More importantly, however, is because our algorithm work ‘smarter’ than
simulated annealing as our cost function guides toward optimality whereas
the latter is simply a brute-force search.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

N
u

m
b
er

 o
f

li
n

k
s

co
v

er
ed

 p
er

 c
o
n

tr
o
ll

er

Number of controllers

Algorithm 1
Sim Annealing

Fig. 4. Number of links covered per controller vs number of controllers in
topology of Fig. 2, comparing Algorithm 1 and simulated annealing

Topology # nodes # links Algo. 1 Sim. Annealing
1 (Fig.2) 28 66 47 (0.1s) 51 (69.9s)
2 108 141 114 (24.4s) 140 (1387.4s)
3 53 456 204 (1.1s) 226 (301.6s)
4 44 106 77 (0.5s) 92 (186.6s)
5 51 129 97 (0.9s) 112 (239.9s)
6 (Fig.7) 45 108 83 (0.03s) 83 (46.3s)

TABLE II
COMPARING THE SIZE OF CONTROLLERS IN DIFFERENT TOPOLOGIES,

WITH TIME TAKEN BY EACH SOLVER SHOWN IN BRACKETS.

and the result provided by Algorithm 1 is at least as good as
that obtained by simulated annealing.

B. Number of controllers and the effect on the size of coverage

In order to reduce the number of links covered by any
controller, an intuitive way is to use more controllers. We
applied Algorithm 1 with various q to three different irregular
topologies. Fig. 5 plots the result.

Obviously, q = 1 shows the total number of links in the
network. In Fig. 5, the curves show a general decreasing trend.
In fact, the curves are decreasing geometrically. This suggests
that although we can reduce the size of a controller, there is an
overhead: As q increases, the average number of controllers
monitoring a link also increases. This means the monitoring
traffic, although small, also increases with q. This is the trade-
off that we have to consider when devolved controllers are
used in place of a single centralized controller.

C. The effect on the number of paths

While the parameter q affects the number of links covered
by each controller, the parameter k, i.e. the number of paths
to find between a source-destination pair, does not have a
significant effect on it. This is shown by Fig. 6. The figure
plots the number of links covered by a controller against the
number of controllers using the topology of Fig. 2, but with
the parameter k varied. We examined with k in ranges of
1 to 10 and also some larger values. The varied value of
k does not produce a significantly different result between
each other. This is explained by the fact that each link on the
network is reused for fairly large number of times in different
flows (s, t). When we pick a multipath from a controller, it
is likely that every links on this multipath are also used by

605

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

N
u

m
b
er

 o
f

li
n

k
s

co
v

er
ed

 p
er

 c
o
n

tr
o
ll

er

Number of controllers

Topology 1
Topology 2
Topology 3

Fig. 5. Number of links covered per controller vs number of controllers in
three different topologies from Rocketfuel

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

li
n
k

s
co

v
er

ed
 p

er
 c

o
n
tr

o
ll

er

Number of controllers

k = 1
k = 3
k = 5

Fig. 6. Number of links covered per controller vs number of controllers in
topology of Fig. 2 with different value of k

another multipath from the same controller. In this sense, if
we increase the multiplicity k, the additional paths also likely
using the links already covered by the controller.

D. Using partition-path approach on regular networks

As mentioned in section IV-A, Algorithm 2 produces a
better result because it has a path-finding algorithm that fits
the path into the controller, in the expense of resulting in a
longer route. This weakness of partition-path algorithm can
be removed on regular topology networks such as fat tree,
which according to [18], has been suggested to use in data
center networks. It is because in a regular topology, we know
a priori the length of an optimum route and it also provides
enough number of distinct paths of the same length between
a source-destination pair.

To illustrate the idea, we show a 3-layer fat tree network
built with switches of 6 ports in Fig. 7. It is trivial to see
that, given a pair of hosts in a different subtree, there are
(6/2)2 = 9 distinct paths (each pass through a distinct core
switch) between them that passes through 5 switches. In such
a network, no path that traverses more than 5 switches is
optimal. With such knowledge, we can modify the path-finding
algorithm used in Algorithm 2 (line 9) to enforce a solution
of fixed-length path. Note that such modification only works
on regular topologies like fat tree or Clos network. In fact, the
modified path-finding algorithm can be used in place of that
in line 2 of Algorithm 1 as well.

We also modified line 2 in Algorithm 2 slightly so that only
the links connecting core and aggregation switches are parti-

tioned into Ei. This is a reasonable modification considering
that in a fat tree network (see Fig. 7), we fixed the whole
path between two nodes when we fixed the links that it uses
connecting the core and aggregation switches.

Applying the path-partition and partition-path algorithms to
the network in Fig. 7 with q = 4, we find the coverage per
controller to be 83 and 56 links respectively over a total of
108 links. Both Algorithm 1 and Algorithm 2 yield an average
hope count of 3.8, due to the modified path-finding algorithm.

V. DISCUSSIONS

A. The communication between a server and controllers

According to the algorithms aforementioned, the multipath
for each (s, t) is installed in only one controller. Therefore,
only one among the q controllers can reply to a route request
for (s, t). When node s is initiating a flow to t, it has to
deduce which controller can answer its route request. There
are two ways to solve this problem. Firstly, node s can send
its request to all q controllers and let the one owns the data to
reply. Trivially this solution incurs additional network traffic.
The second solution is to have a mapping at node s: For each
destination t, there is a table in s tells which controller contains
the route for (s, t). This is a viable solution because the total
number of nodes |V | (and the number of destinations t for any
node s) is usually limited. Moreover, when we configured the
controllers, storing the mapping information of {(s, t), ∀t ∈
V } to s is just one step further with the existing information.

B. Path-partition vs partition-path

Section IV-A mention that path-partition algorithm is in-
ferior to partition-path algorithm in terms of the size of
controllers produced. However, only path-partition algorithm
can guarantee shortest-path routes because the path-finding
algorithm is not interfered by the configuration of controllers.

When regular topologies are used, such as fat tree networks,
we can have a modified path-finding algorithm to ensure
shortest-path routes are found. This makes the partition-path
algorithm favorable. Therefore, it is interesting to see that path-
partition algorithm is suitable for use with irregular networks
while partition-path algorithm is good for regular networks.

C. Precompute routes

Using pre-computed routes in this paper is intentional.
Assume each controller covers only a part of the network and
a flow’s route is computed dynamically when the request is
arrived. It is hard to guarantee that, among the q controllers,
there must be one can fulfill any route request. The role of
pre-computed multipaths is therefore a verifier to guarantee a
controller is responsible for any possible flow.

D. Link failures

While we do not address the actual operation of devolved
controllers in a network, it is expected that whenever there
is a link failure, i.e. a topology change, something have to
be done in the controllers to reflect this change. This could
be disabling certain paths (among the k multiple paths of

606

. .
Host

.
Edge

.
Aggr.

.
Core

.Subtree

Fig. 7. A fat tree topology built with switches of 6 ports

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

li
n
k

s
co

v
er

ed
 p

er
 c

o
n
tr

o
ll

er

Number of controllers

r = 1
r = 2
r = 3
r = 4

Fig. 8. Number of links covered per controller vs number of controllers in
topology of Fig. 2 with different value of r

the same source-destination pair), or reconfiguration of the
network. This overhead could be large and intensive. In order
to provide a prompt reaction, therefore it is essential to keeping
the number of links managed by a controller small. This
justifies our objective in the optimization.

E. Redundancy

While it is possible for more than one controller that can
respond to a route request, the algorithms in section III does
not guarantee this. One way to ensure redundancy is to modify
line 6 of algorithm 1 or line 12 of algorithm 2, so that a path
is added to r > 1 controllers. Usually r = 2 is sufficient for
resilience. In Fig. 8, we plot the number of links covered by
each controller in different values of r in topology of Fig. 2,
using the modified path-partition algorithm. Trivially, as the
degree of redundancy r increases, the number of links covered
by a controller increases. The increment, however, is moderate
due to the overlap of link coverage between controllers. In
other words, we can have redundancy at just a small price.
More details on the redundancy design, its overhead, and an
example showing its mechanism would be in a future paper.

VI. CONCLUSION

The focus of this paper is to see the possibility of using
multiple small independent controllers instead of a single
centralized omniscient controller to manage resources. We use
flow routing as an example to see how we can use multiple
controllers to assign routes to flows base on dynamic network
status. The main reason to avoid a single controller is because
of scalability concern. Therefore, we forbid our controllers
to have the complete network topology information in run
time, and introduced the concept of devolved controllers.

Furthermore, we propose algorithms that aims to limit the
network topology information stored in the controllers.

Our result shows that, devolved controllers are possible. We
proposed two heuristic algorithms to limit the size of each
controller. Although they do not seek for a globally optimal so-
lution, their results are as good as simulated annealing solvers
but much faster. The heuristic algorithms, path-partition and
partition-path algorithms, are found to be suitable for irregular
and regular networks respectively. Such difference is due to
the fact that, in regular networks, we can easily estimate the
length of route a priori.

In computer networks such as data center or compute
clouds, controllers are often used, such as for security policy
control, resource allocation, billing, and so on. This paper is a
precursor to a new design direction on the use of controllers,
such that they can scale out.

REFERENCES

[1] M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. NSDI, 2010.

[2] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” in Proc. OSDI, 2006.

[3] M. Casado et al., “Ethane: Taking control of the enterprise,” in Proc.
SIGCOMM, 2007.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th OSDI, San Francisco, CA, Dec. 2004.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. ACM SOSP, Bolton Landing, New York, USA, Oct. 2003.

[6] A. Greenberg, N. Jain, S. Kandula et al., “VL2: A scalable and flexible
data center network,” in Proc. SIGCOMM, 2009.

[7] R. N. Mysore et al., “Portland: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. SIGCOMM, 2009.

[8] B. Schwartz et al., High Performance MySQL, 2nd ed. Sebastopol,
CA: O’Reilly Media, 2008.

[9] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, Apr. 2008.

[10] N. Gude et al., “NOX: Towards an operating system for networks,” ACM
SIGCOMM CCR, vol. 38, no. 3, pp. 105–110, Jul. 2008.

[11] N. McKeown, Personal communication, 2010.
[12] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs,” Bell Sys Tech Journal, vol. 49, pp. 291–307, 1970.
[13] N. L. Johnson and S. Kotz, Urn Models and Their Application. New

York: John Wiley & Sons, 1977.
[14] J. Mudigonda et al., “SPAIN: Design and algorithms for constructing

large data-center ethernets from commodity switches,” HP, Tech. Rep.
2009-241, 2009.

[15] E. Minieka, Optimization algorithms for networks and graphs. New
York: M. Dekker, 1978.

[16] R. Guérin and A. Orda, “Computing shortest paths for any number of
hops,” Trans. on Networking, vol. 10, no. 5, pp. 613–620, Oct. 2002.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. SIGCOMM, 2002.

[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM, 2008.

607

