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Abstract - There is growing interest in renewable energy
resources and smart grid. Since most renewable sources are
highly intermittent, they can induce significan fluctuation
on the supply side of the power grid. On the other hand,
the use of smart meters and smart appliances in the smart
grid can cause significan uncertainties on the demand side
as well. Unit commitment scheduling of power generation
systems is an important issue in smart grid communications
to coordinate energy demand and generation. In this paper,
we study the stochastic unit commitment problem in smart
grid communications. Hidden Markov models (HMMs) are
used for renewable energy resources. The stochastic power
demand loads are modeled by a Markov-modulated Poisson
process (MMPP). We show that, under reasonable conditions
on the smart grid, structural results can be derived for the unit
commit problem, which make the solution practically useful.
Simulation results are presented to show the effectiveness of
the proposed schemes.
Keywords - Unit commitment, renewable energy, smart grid,
power demand loads

I. INTRODUCTION
Recently, there is growing interest in obtaining energy

from sustainable resources, such as wind, solar and hydro
[1]. Most renewable energy sources are highly intermittent in
nature and often uncontrollable, which can induce significan
fluctuation on the supply side of the power grid. Smart
grid technologies can facilitate these renewable energy solu-
tions, by coordinating and managing dynamically interacting
power-grid participants [2]. A smart grid is an intelligent
electricity network, which can reduce power demand peaks,
encourage manufacturers to produce “smart” appliances to
reduce energy use, and sense and prevent power blackouts by
isolating disturbances in the grid [2]. How to use information
and communication technologies, such as advanced metering,
and bi-directional communications is a major challenge in the
smart grid to save energy, reduce cost and increase reliability.
The use of smart meters and smart appliances in the

smart grid, which are an emerging class of energy users, can
cause uncertainties on the demand side [3]. Therefore, it is
a challenging task to guarantee that power demand load and
power generation remain balanced, which is very important
for system reliability. A mismatch between the supply and
demand could cause a deviation of zonal frequency from
nominal value [4], and power outages and blackouts may
occur, when it gets severe. Unit commitment scheduling of

power generation systems is an important issue to effec-
tively coordinate energy demand and generation in order to
minimize cost and greenhouse gas emissions, and to avoid
blackouts in the grid [5].
In order to effectively model renewable energy, the

successive-time state transition probabilities need to be
known [6, 7]. Weibull, Rayleigh, lognormal or Gamma prob-
ability distribution functions (PDFs) are often used to predict
the magnitude of the wind speed or solar radiation. However,
these theoretical PDFs assume independence of successive
wind speeds or solar radiation levels [8], which may not be
realistic in practice. Therefore, finite-stat Markov models
have been widely accepted in the literature as an effective
approach to characterize the correlation structure of the
renewable energy outputs [6, 7]. Considering Markov models
may enable substantial performance improvement over the
schemes with memoryless models. Moreover, it is generally
assumed that the renewable energy system state is known
perfectly in previous work. However, meteorological insta-
bility and complex system dynamics (e.g., wind turbine or
solar cells malfunction) make it difficul to fully observe the
system state. Therefore, hidden Markov models (HMMs) are
more efficien in modeling renewable energy systems [9, 10].
In this paper, we study the stochastic unit commitment

problem in smart grid communications. HMMs are used
for the renewable energy resources. The stochastic power
demand loads are modeled as a Markov-modulated Poisson
process (MMPP). Costs, reliability and pollutant emissions
are considered in the scheme. We model the operational cost
of the utility grid as a convex function of instantaneous
power consumption, so as to reflec the fact that each
additional unit of power needed to serve demand become
more expensive as the total power demand increases. We
then formulate the unit commitment problem as a partially
observable Markov decision process (POMDP) multi-armed
bandit problem [11, 12]. A value iteration method and a
structural results method are presented to solve the prob-
lem. The value iteration method works well for a smart
grid with a small number of generation units. For a large
smart grad with a variety of different generation units, the
value iteration-based solution can become computationally
intractable. Therefore, we further present structural results
for this problem. We show that, under reasonable conditions
on the smart grid, structural results can be derived for the
the unit commit problem, which are trivial to implement and
make the solution practically useful. Simulation results are
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Fig. 1. The relationship among supply side management, demand side
management, and unit commitment.

presented to show the effectiveness of the proposed schemes.
The rest of the paper is organized as follows. Section

II introduces the system models. Section III describes the
formulation and solutions to the unit commitment problem.
Section IV presents the simulation results. Finally, we con-
clude this study in Section V.

II. SYSTEM MODELS

In this paper, we consider that solar panels, wind turbines
and traditional fossil fuel power generators are integrated into
the smart grid. Since both renewable resources highly depend
on weather conditions, it is possible that power fluctuation
occur. Therefore, fossil fuel power generators are also used
in order to mitigate or even cancel out the fluctuations
In the smart grid, demand-side management (DSM) pro-

grams are also implemented by utility companies to reduce
and shift power consumption at the customer side. Therefore,
two kinds of energy users exist in the smart grid: traditional
energy users, and opportunistic energy users, who introduce
uncertainties on the demand side.
The relationships between supply side management and

unit commitment, and demand side management and unit
commitment are illustrated in Fig. 1 [13]. Both the status of
the generators and the status of the demand side determine
which units will be committed. In turn, unit commitment
affects demand, which produces a feedback loop, and is
different from the traditional one-way affect that the demand
side has on unit commitment. The power generation units
need to be integrated together using smart grid communica-
tions in order to serve the stochastic demand loads while
satisfying economic, reliability and environmental criteria.
Therefore, it is critical to optimally schedule these units,
considering stochastic demand loads, costs, reliability and
pollutant emissions.

A. Generation Unit Model
Assume that there are Gw wind turbines, Gs solar panels

and Gf fossil fuel power generation units in the smart grid,
for N units total. In this paper, wind power and solar power

mean the electric power generated by wind turbines or solar
panels rather than the input wind power or solar radiation
power. Wind turbine and solar panel may mean an individual
energy generation unit or a cluster of such units as a farm,
depending on the context under consideration. We consider
that the time axis is divided into equal time slots, which
correspond to the time intervals between two decisions.
Let the state of a generator n, n ∈ {1, 2, . . . , N}, be s

(n)
k

at time slot k. Each state represents the power supply level
of generator n. The power supply of each generator can be
divided into L discrete levels. The power supply state space
S includes all the power supply states {s1, . . . , sL}. The state
of renewable energy generator n, evolves according to a L-
state firs order Markov chain with state transition probability
matrix J (n), which is described as follows:

J (n) =
(
s
(n)
ij

)
i,j∈S

, where s
(n)
ij = P

(
s
(n)
k+1 = j|s(n)k = i

)
.

The observation of selected generator n’s power level state
is denoted as y

(n)
k at time slot k, which belongs to a finit

set Mn indexed by m(n) = 1, . . . ,Mn, and |Mn| denotes
the number of possible observations of the generator n’s
power generation level state. If generator n is picked at time
k, and the system state s

(n)
k equals to i, the probability of

observation m obtained from generator n is denoted as:

bi

(
ak = n, y

(n)
k = m

)
= P

(
y
(n)
k = m|s(n)k = i, ak = n

)
,

(1)
where i ∈ S, and m ∈ Mn. Defin the observation matrix as:

B(n)
s

(
y
(n)
k = m

)
= diag[b1(ak,m), . . . , bL(ak,m)]. (2)

B. Power Demand Model

The stochastic power demand is modeled by a Markov-
modulated Poisson process (MMPP). MMPPs have been
extensively used for modeling the processes in various appli-
cations, such as multimedia applications [14, 15]. MMPP can
qualitatively model the time-varying arrival rate and capture
some of the important correlations between the inter-arrival
times while still remain analytically tractable.
The MMPP for modeling power demands consists of a Q-

state Markov chain. Let the state of the demand arrival rate
be dq, dq ∈ D = {D1, D2, . . . , DQ}, where Q is the number
of demand state levels. The arrival power demand resides in
state dq for a mean time of 1/rq with rate dq . In the proposed
scheme, the MMPP is specifie by the infinitesima generator
matrix GM as follows [16]:

GM =

⎛⎜⎜⎜⎜⎜⎝
−r1 r1

−r2 r2
. . . . . .

−rQ−1 rQ−1

rQ −rQ

⎞⎟⎟⎟⎟⎟⎠ . (3)
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Since matrix GM models a continuous-time Markov chain,
we use uniformization [17] to obtain the equivalent discrete-
time transition probability matrix T for the stochastic power
demand as follows [7]:

T =
GM

∨+ I
, (4)

where ∨ ≥ minq(|[GM ]q,q|) (i.e., ∨ is greater than or equal
to the absolute value of the minimum diagonal element in
GM ) and I denotes an identity matrix. The observation prob-
ability matrix of the hidden Markov chain for power demand
state can be obtained based on the conditional probability
function of the actual demand states and observation states.

C. Cost Model
In order to minimize costs and greenhouse gas emissions,

and to avoid blackouts, we consider utility costs (UCs),
customer interruption costs (CICs) and pollutant emission
costs (PECs) in our scheme.
At time slot k, let unit n be selected (i.e., ak+1 = n),

based on the history information Y
(ak)
k . The instantaneous

cost C
(
x
(n)
k , n

)
incurred at time k is as follows [1, 18]:

C
(
x
(n)
k , n

)
= UC

(n)
k

(
x
(n)
k

)
︸ ︷︷ ︸

utility

+CIC
(n)
k

(
x
(n)
k

)
︸ ︷︷ ︸

interruption

+PEC
(n)
k

(
x
(n)
k

)
︸ ︷︷ ︸

pollution

, (5)

where x
(n)
k =

(
s
(n)
k , dk

)
, which includes the state of gener-

ation unit n and the demand state at time k.
Utility costs UC

(n)
k include the average costs associated

with the required investments and operations of the chosen
generator n during the time slot k, when a renewable energy
generator is chosen. If a fuel generator is chosen, the utility
cost for purchasing power at time k can be calculated as:
UC

(n)
k

(
s
(n)
k , d

(n)
k

)
= pk × ϕ(pk) where pk is the power

purchased at time k, and ϕ(pk) is the power price. If only one
fuel generator is chosen at time slot k, pk = d

(n)
k . Function

ϕ(·) is an increasing, differentiable convex function, which
reflect that each unit of additional power needed to satisfy
increasing demand becomes more expensive to obtain and
make available to the consumers.
Customer Interruption Cost CIC

(n)
k is directly related to

the type of customers and the duration of interruptions (i.e.
the length of time slot k), which is define as follows:

CIC
(n)
k =

{
F (Δ), Δ > 0,

0, Δ ≤ 0,

where Δ equals to the power demand subtracting to the
power generated from generator n at time slot k. F (Δ) =∑Z

z=1 fz(Δz), where Δ = Δ1 + · · · + Δz . Function fz(·)

is the CIC in customer sector z, and Z is the number of
customer sectors.
With the increasing concerns about environmental protec-

tion, stricter regulations on pollutant emissions have been
introduced, often including financia penalties associated with
emissions (e.g., carbon credits), as well as non-financia costs
associated with environmental damage, which is represented
as financia penalties as well in our model. There are no
pollutant emissions for renewable energy generation systems.
The amount power generators must pay depends on fuel
consumptions pk, which can be calculated as follows [1]:

PEC
(n)
k = α+ ε× pk + γ × p2k, (6)

where α, ε, and γ are the coefficient approximating the
generator emission characteristics.
The total expected discounted cost over an infinite-tim

horizon is given by:

Jμ = E

[ ∞∑
k=0

βkC
(
x
(n)
k , n

)]
, (7)

where β is the discounted factor, which models the fact future
cost is worth less than immediate cost, because the future is
less certain. The objective is to fin the optimal stationary
policy μ∗ = argmaxμ∈η Jμ to minimize the cost in (7).
In the proposed scheme, the number of scheduled units

at each time slot is determined by the renewable energy
generation situation and the total power demand loads. For
simplicity of the presentation, we assume that one genera-
tion unit (either a renewable energy generation unit or fuel
generation unit) will be chosen at each time slot. Note that
it is straightforward to generalize the model to picking more
than one generation unit.

III. FORMULATION AND SOLUTIONS TO THE
STOCHASTIC UNIT COMMITMENT PROBLEM

A. Formulation of the Stochastic Unit Commitment Problem
The decision on which generation units are chosen should

not totally depend on the current observation values, since the
renewable energy generation units’ states are only partially
observable. According to [19], the above POMDP multi-
armed bandit problem can be re-expressed as a fully observ-
able multi-armed bandit problem in terms of the information
state, which means optimal units can be chosen based on the
information states.
The information state of a generation unit refers to a proba-

bility distribution over the unit’s states. The entire probability
space (the set of all possible probability distributions) is
referred to as the information space. For an arbitrary unit n,
the information state at time k is denoted as π (n)

k . If unit n
is chosen, a new observation y

(n)
k+1 is obtained at time k+1.

Its information state at that time π
(n)
k+1 can be recursively

updated by the hidden Markov model state filte known as
the forward algorithm with the new observation [20].
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For our proposed scheme, the optimal policy has an
indexable rule [11], meaning the units’ Gittins indices
γ(n)

(
π
(n)
k

)
(n ∈ {1, . . . , N}) are used to choose the ap-

propriate unit at time k. Furthermore, the optimal policy at
time k is that the unit with the largest reward Gittins index
at that time should be selected. In the following, we present
two possible methods to compute the Gittins index.

B. Solutions to the Stochastic Unit Commitment Problem
A value iteration algorithm can be used to solve the above

unit commitment problem. An elementary coordinate trans-
formation is introduced to transform the value function with
a parameterized retirement reward to the value function of a
standard POMDP. The near-optimal Gittins index γ

(n)
H (π(n))

for an arbitrary unit n is given by the finite-dimensiona
representation in [20].
In this subsection, we show that, under reasonable condi-

tions on the cost vector C, state transition probability matrix
U (i.e., J ⊗T ) and observation probability matrix B of each
generation unit in the smart grid, the Gittins index in our
problem can be monotone increasing in the information state
(with respect to the monotone likelihood ratio (MLR) order-
ing [12]). Therefore, if at a given time the information states
of these N generators are MLR comparable, then the optimal
policy is to simply pick the generator whose information state
is smallest in terms of the MLR ordering. The definitio of
MLR ordering used in this paper is described as follows.

Definitio III.1. MLR Ordering.
Assume that each generation unit includes the same num-

ber of states. Namely, X1, . . . ,XN are equal to X.
1) Let π1 and π2 be two information state vectors. Then,

π1 is less than π2 with respect to the MLR ordering –
denoted as π1 ≤r π2 if π1(i)π2(j) ≥ π2(i)π1(j), i <
j, i, j ∈ X.

2) A function f(·) is MLR increasing if for all π1, π2 ∈ X,
π1 ≤r π2 implies f (π1) ≤ f (π2).

3) Let π(1), π(2), . . . , π(N) denote the information states
of N units. Then they are said to be MLR comparable
if for any n, ñ ∈ {1, . . . , N}, either π(n) ≤r π(ñ) or
π(n) ≥r π(ñ).

4) Given MLR comparable information states of these
N units, denote the smallest information state (with
respect to MLR ordering) as min{π(1), . . . , π(N)} with
index argmin{π(1), . . . , π(N)}.

In the following, we present the conditions on the param-
eters C, U and B of an arbitrary generation unit, where its
Gittins index γ(π) is monotone in information state π with
respect to the MLR ordering.

Theorem 1. Consider the following assumptions for each
generation unit:

Assumption 1. Costs satisfy C(i) ≤ C(i + 1).

Assumption 2. State transition probability matrix U is
totally positive of order 2 (TP2), i.e., all its second order
minors are non-negative. That is, determinants∣∣∣∣ ui1j1 ui1j2

ui2j1 ui2j2

∣∣∣∣ ≥ 0 for i2 ≥ i1, j2 ≥ j1.

Assumption 3. Symbol probabilities satisfy (bi,m)m∈M ≤r

(bi+1,m)m∈M for i = 1, . . . , |X| − 1.

Then the Gittins index γ(π) of each unit is MLR increasing.
Therefore, if the information states of the N units are MLR
comparable, then the optimal policy μ∗ is to pick the unit with
the smallest information state with respect to MLR ordering
at each time slot, namely, ak = μ∗

(
π
(1)
k , . . . , π

(N)
k

)
=

argmin
(
π
(n)
k

)
, n ∈ {1, . . . , N}.

In the following, we show that under some reasonable
conditions on the matrices of each generation unit in the
smart grid, the generation system meets the above three
assumptions. Assumption 1 shows that for an arbitrary gen-
eration unit, the cost in state i is less than or equal to that
in state i + 1. Due to continuity arguments, if the state of
a unit is xi, 1 ≤ i ≤ X at time k, then at time k + 1, it is
reasonable to assume that it is either still in state xi, or, with
a lower probability, in the neighboring states x i+1 or xi−1.
Therefore, in our proposed scheme, each unit can be modeled
as a X-state Markov chain with diagonally dominant tridi-
agonal transition probability matrix U , where u ij = 0 for
j ≥ i + 2 and j ≤ i − 2. According to [21], a necessary
and sufficien condition for tridiagonal matrix U to meet
Assumption 2 is that ui,iui+1,i+1 ≥ ui,i+1ui+1,i. Several
common observation probability models for the generation
units that satisfy Assumption 3 are listed as follows:
1) Each unit measures the target in quantized Gaussian

noise.
2) Observation probabilities die geometrically fast with

the error between the reported observation y and the
real state x.

3) The value the unit reports is never more than one
discrete value away from the true value. Therefore, B
matrix is the following X ×X tridiagonal matrix:

⎛
⎜⎜⎜⎜⎜⎝

p1 1− p1 0 0 . . .
1−p2

2
p2

1−p2
2

0 . . .
0 1−p3

2
p3

1−p3
2

. . .
0 0 1− p4 p4 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

When vector C, matrix T , and matrix B of each generation
unit meet all of the three assumptions in Theorem 1, the
Gittins index γ(π) is monotone increasing. Therefore, if the
information states of the N units are MLR comparable,
the optimal policy is to pick the unit with the smallest
information state with respect to MLR ordering.
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IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we consider the following simulation
scenario to evaluate the proposed scheme’s performance.
There are wind turbine generators (WTGs), photovoltaic sys-
tems (PVs), and conventional fossil-fuel generation systems
(FFGSs) in the smart grid. Each generator includes two power
supply level states {high, low}, and there are two demand
load states {peak, off-peak}. The utility cost of wind turbines
is lower than that of solar panels, and higher than that of
fossil fuel generators.
The wind speed state transition probability matrix, taken

from [22], was calculated from the average frequency of
transitions of real wind speed data gathered at Tangiers,
Morocco. The state transition probability matrix of cloud
coverage is define following to [7, 23]. Therefore, the power
supply level state transition probability matrices of the WTG,
PV and FFGS are as follows:
J (1) =

(
0.756 0.244
0.279 0.721

)
, J (2) =

(
0.850 0.150
0.150 0.850

)
,

J (3) =

(
1.000 0.000
0.000 1.000

)
.

Power demand loads are determined by two Poisson pro-
cesses, one for peak hours and another for off-peak hours,
where the inter-arrival times between two requests are expo-
nentially distributed with a mean of 1 hour and 12 hours, re-
spectively. Assume the demand in each request is 100 kWh/h.
The corresponding power demand load state transition matrix
is define as:
T =

(
0.700 0.300
0.400 0.600

)
.

Their observation matrics are define as:
B

(n)
s = B

(n)
t =

(
0.900 0.100
0.100 0.900

)
, where n = 1, 2, 3.

The price of electricity differs for peak rate 9.9 cents/kWh
and off-peak rate 5.1 cents/kWh [24] and that of solar power
is 80.2 cents/kWh [25] in Ottawa, Canada. The price of
wind power is set to 20.5 cents/kWh. The cost matrices are
as follows in $/h: C(1) = (20.5, 25.5, 890.5, 1.7), C(2) =
(80.2, 85.2, 950.2, 6.7), C(3) = (309.9, 314.9, 1075.1, 26.1).
Each cost element includes utility costs, customer interrup-
tion costs and pollutant emission costs.
We firs run simulations to compare the costs of the

proposed scheme with and without considering the dynamic
power demand loads and an existing scheme that does not
consider (hidden) Markov models for modeling renewable
energy resources [26]. Fig. 2 shows the average cost within
the firs 20 hours of the simulations of the smart grid of
different sizes. In these simulations, we use the same three
kinds of units mentioned earlier. The results show that the
proposed scheme has the lowest cost compared to the existing
scheme and the proposed scheme without considering the
demand loads. The results also show that the cost of the
proposed schemes and existing scheme decreases when the
number of available units in the smart grid increases from
3 to 18. The reason is that there are more units that can be
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Fig. 2. Average costs of three schemes with varying units in the smart
grid.
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selected, so low-energy units can be avoided when demand
is high.
Different values of pollutant emission costs are also used in

the simulations to analyze how they affect the CO2 emissions
in the smart grid, since reducing pollutant emissions is the
main motivation for employing renewable energy generation.
We understand that the higher the pollutant emission cost,
the greater the chance that renewable energy generators are
scheduled. In our paper, the CO2 emission is set with 0.6999
kg/kWh [27]. Fig. 3 shows that CO2 emissions increase with
the reduction of the pollutant emission costs.
Simulations are performed to compare the computational

efficien y in the proposed scheme using the structural results
method (SRM) and the value iteration algorithm (VIA). Table
I shows the computation time spent in the proposed scheme
in the off-line and on-line parts, as the total number of unit
types in the smart grid varies from 2 to 50. For the value
iteration algorithm, the on-line computation time is of the
same level as that of the structural results method. The table

5
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TABLE I
THE COMPUTATION TIME OF THE TWO METHODS IN THE PROPOSED

DISTRIBUTED SCHEME.

Method 2 types 4 types 20 types 50 types
SRM (off-line) 0 0 0 0
SRM (on-line) 0.0427s 0.0576s 0.2337s 0.5960s
VIA (off-line) 0.03s 8h1m22s unfeasible unfeasible
VIA (on-line) 0.0379s 0.0531s - -

also shows that the off-line time is the dominant part for the
value iteration algorithm. The computation time dramatically
increase when the number of unit types changes from 2 to
4: from 0.03 seconds to more than 8 hours. In the structural
results method, a quicksort algorithm with MLR ordering
is used to sort the units by current information states. The
off-line computation time for the structural results method
is always equal to 0, since the method is only used for on-
line unit scheduling. The computation time of the structural
results method slightly increase with the increasing type of
the units in the smart grid. This shows that the structural
results are practically useful in the smart grid.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a distributed stochastic
unit commitment scheme in smart grid communications. In
the proposed scheme, the most suitable generation unit is
dynamically scheduled based on the intermittent renewable
energy power generation situations, stochastic power demand
loads, utility cost, reliability and pollution emissions of the
generation units. Hidden Markov models and a Markov-
modulated Poisson process were used in modeling renewable
energy resources and the power demand loads, respectively.
We formulated the unit commitment problem as a POMDP
multi-armed bandit problem, and its optimal policy can be
chosen using Gittins indices. A value iteration method and a
structural results method were used to solve the problem.
Simulation results showing that our scheme can decrease
costs and greenhouse gas emissions were presented. Future
work is in progress to consider system reliability in the
proposed framework. Mathematical programming method
will be also used to evaluate the impact demand response
on unit commitment problems and to pursue optimal price-
assigning strategy.
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