
 

 

Abstract — In this contribution, we focus on energy-aware 

devices able to reduce their energy requirements by adapting 

their performance. We propose an analytical model to 

accurately represent the impact of green network technologies 

(i.e., low power idle and adaptive rate) on network- and 

energy-aware performance indexes. The model has been 

validated with experimental results, performed by using 

energy-aware software routers and real-world traffic traces. 

The achieved results demonstrate how the proposed model can 

effectively represent energy- and network-aware performance 

indexes. Moreover, also an optimization procedure based on 

the model has been proposed and experimentally evaluated. 

The procedure aims at dynamically adapting the energy-aware 

device configuration to minimize energy consumption, while 

coping with incoming traffic volumes and meeting network 

performance constraints. 
 

Index Terms — green networking; low power idle; adaptive 

rate. 

I. INTRODUCTION 

In the last few years, Telecom operators, Internet Service 

Providers and public organizations reported statistics of 

network energy requirements and the related carbon 

footprint, showing an alarming and growing trend [1]. The 

Global e-Sustainability Initiative (GeSI) [2] estimates an 

overall network energy requirement of about 21.4 TWh in 

2010 for European Telcos, and foresees a figure of 35.8 

TWh in 2020 if no Green Network Technologies (GNTs) 

will be adopted. It is well known that network links and 

devices are provisioned for busy or rush hour load, which 

typically exceeds their average utilization by a wide margin 

[3]. While this margin is seldom reached, nevertheless the 

power consumption is determined by it and remains more or 

less constant even in the presence of fluctuating traffic 

loads. This situation suggests the possibility of adapting 

network energy requirements to the actual traffic profiles. 

Thus the key of any advanced power saving criteria resides 

in dynamically adapting resources, provided at network, link 

or equipment levels, to current traffic requirements and 

loads [4], [5]. In this respect, current green networking 

approaches range from novel traffic engineering and routing 

criteria, to the introduction of energy-aware equipment and 

network interfaces [5]. This paper focuses on analyzing and 

evaluating the impact of power scaling GNT on next-

generation network devices. This is accomplished by 

adopting two basic techniques: Adaptive Rate (AR) and Low 

Power Idle (LPI)
1
. The former allows dynamically 

modulating the capacity of a link, or of a processing engine, 

in order to meet traffic loads and service requirements; the 

 
1 For the sake of clarity, even though LPI might be seen as a limiting 

case of AR, we prefer to explicitly distinguish the two techniques. 

latter forces links or processing engines to enter low power 

states when not sending/processing packets and to quickly 

switch to a high power state when sending one or more 

packets. In such scenario, our main objective is to provide a 

novel analytical model based on classical concepts of 

queuing theory and able to capture the trade-off between 

energy- and network-aware performance metrics, when AR 

and/or LPI techniques are adopted in a network device. In 

order to validate the proposed model, we performed several 

tests by using real-world traffic traces, and compared the 

estimated performance indexes with experimental 

measurements, obtained with Component Off-The-Shelf 

(COTS) software (SW) routers. Moreover, we also consider 

a simple energy-aware optimization procedure based on the 

analytical model we propose. Such procedure aims at 

periodically adapting the energy-aware configuration of the 

device in order to minimize its power consumption, while 

meeting network Quality of Service (QoS) constraints and 

incoming traffic volumes.  

The paper is organized as follows. Section II introduces 

AR and LPI capabilities and how they can impact on 

network performance. The proposed model is described in 

section III, and its validation results are in section IV. The 

optimization procedure based on the proposed model is 

explained in Section V. Section VI shows some performance 

evaluation results obtained with the optimization procedure. 

Finally, the conclusions are drawn in section VII. 

II. ENERGY-AWARE SILICON AND NETWORK PERFORMANCE 

Nowadays, the largest part of current network equipment 

does not include power scaling capabilities, but power 

management is a key feature in today's processors across all 

market segments, and it is rapidly evolving also in other 

hardware (HW) technologies [6]. The rest of this section is 

structured as follows. Sub-section A introduces how ACPI 

(Advanced Configuration and Power Interface) standards 

make AR and LPI capabilities accessible to the SW layer. 

Sub-section B discusses the impact of AR and LPI on the 

forwarding performance of a network device, and how these 

two capabilities may interact between themselves. 

A. The ACPI example 

In general purpose computing systems, the ACPI [7] 

standard models AR and LPI functionalities by introducing 

two sets of energy-aware states, namely performance and 

power states (P- and C-states), respectively. Regarding the 

C-states, C0 is an active state where the CPU executes 

instructions, while C1 through Cn are processor LPI states. 

As the sleeping power state (C1, …, Cn) becomes deeper, the 

transition between active and sleeping (and vice versa) 

requires longer time. ACPI also allows the performance of 

the processor’s core to be tuned through P-state transitions. 

P-states allow modifying the operating energy point of a 

core by altering the working frequency and/or voltage, or 

throttling its clock. Thus, by using P-states, a core can 

consume different amounts of power while providing 
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TABLE I –NOTATION DEFINITION. �� selected C-state, �� ∈ ��� , ��, … , �	
 �� selected P-state, �� ∈ ���, ��, … , �

 τ������ time needed to wake up the HW from the �� sleeping 

state τ������� time needed to put the active HW into the �� sleeping 

state τ�������� time to recover forwarding operation after the HW 

wakeup τ��������, ��� setup time,  ���������, ��� � ������� � ��������� ����� packet service rate in the �� state  !���� power consumption when the server is active in �� state  "#$����� power consumption when the server is sleeping in �� 

state  ����� power consumption during ��� and ���� periods % buffer size & rate of batch arrival '(  probability that an incoming burst contains j packets )�*� Probability Generating Function (PGF) of batch sizes ' average number of customers in a batch �� stationary probability of having + ∈ ,0,%. packets in 

the queuing system / traffic utilization of the server, which can be expressed 

as / � &'/� in the case of infinite buffer 1�2� Laplace transform of the customer service process 3�2� Laplace transform of the vacation process due to setup 

times 45 average duration of server idle periods including ���� 46 average duration of server busy periods including ������ 47 average duration of idle/busy renewal process 

 

different processing performance at the C0 state. At a given 

P-state, the core can transit to higher C-states in idle 

conditions. In general, the higher the index of P- and C-

states is, the less will be the power consumed, and the heat 

dissipated. Due to issues in silicon electrical stability, the 

transition time between different P-states is generally very 

slow: a large part of current CPUs can switch their operating 

P-state in about 10 ms. Given such large P-state transition 

times, it is worth noting that any closed-loop control policies 

with tight time constraints are not feasible and cannot be 

adopted for optimizing power consumption inside network 

device architectures. 

B. The energy-aware trade-offs 

As previously sketched, LPI and AR have different 

impacts on packet forwarding performance. As shown in Fig 

1, AR (Fig. 1c) obviously causes a stretching of packet 

service times while the sole adoption of LPI (Fig. 1b) 

introduces an additional delay in packet service, due to the 

wake-up times. Moreover, preliminary studies in this field 

[3] showed how performance scaling and idle logic work 

like traffic shaping mechanisms, by causing opposite effects 

on the traffic burstiness level. The wake-up times in LPI 

favour packet grouping, and then an increase in traffic 

burstiness, while service time expansion in AR favours burst 

untying, and consequently traffic profile smoothing. Finally, 

as outlined in Fig. 1d, the joint adoption of both energy-

aware capabilities may not lead to outstanding energy gains, 

since performance scaling causes larger packet service 

times, and consequently shorter idle periods. It is worth 

noting that the overall energy saving and the network 

performance strictly depend on incoming traffic volumes 

and statistical features (interarrival times, burstiness levels, 

etc.). For instance, idle logic provides top energy and 

network performance when the incoming traffic has a high 

burstiness level. This is because less active-idle transitions 

(and wake-up times) are needed, and the HW can remain in 

a low consumption state for longer periods. 

III. THE ANALYTICAL MODEL 

The model we propose aims to represent the behavior and 

the performance of an energy-aware network device, which 

includes LPI and AR capabilities. For the sake of simplicity, 

we adopt the ACPI representation of power management 

primitives, and refer to AR and LPI configurations in terms 

of P- and C-states. We assume to model the packet 

computation engine of the network device as a single server 

queuing system with maximum service rate �. The selection 

of different P- and C-states is supposed to impact on the 

forwarding engine performance in terms of both packet 

service capacity and wakeup times of the server. Similarly 

to [8] and [9] as previously sketched, the service rate � 

represents the device capacity in terms of packet headers 

that can be processed per second. Moreover, we assume all 

packet headers requiring a constant service time. This 

hypothesis represents a reasonable approximation for a large 

part of current routing and switching devices. A finite 

buffer, with a size equal to N packets, is assumed to be 

bound to the server for backlogging incoming traffic 

packets. The model notation is introduced in Table I. The 

rest of this section is organized as follows. Sub-section A 

introduces the main parameters to be considered in a device 

with AR and LPI capabilities. Subsection B shows the 

model representing the traffic incoming to the energy-aware 

device. Finally, the proposed analytical model is described 

in Sub-section C. 

A. Introducing the Energy-Aware Parameters 

Let ���, ��, … , �	
 and ���, ��, … , �

 be the sets of 

sleeping and performance states, respectively, available in 

the device.  

Each sleeping state is thought to be bound with both a 

different value of idle power consumption  "#$����� and 

different transition times �899��:� and 	�������, needed to 

enter and to wake-up from the idle state, respectively. In a 

similar way, each P-state can be related with active power 

consumption  !����, as well as with a packet processing 

capacity �����. As the �� state becomes higher, both  !���� and ����� values decrease. From the considerations 

in section II, it is reasonable to assume the network device 

working at small time-scales by switching between a 

sleeping �� state, when idle, and a running �� state, when 

performing operations. For this reason, throughout the paper 

we do not explicitly indicate the dependency of parameters 

(e.g. 	 !�∙�, ��∙�,	and	����∙�) on the C- and P-states. Fixed 

the state pair	=�� , ��>, the system works with the renewal 

process representation shown in Fig. 2. The server has 

 
Fig. 1. Packet service times and power consumptions in the cases with: 

(a) no power-aware optimizations, (b) only LPI, (c) only AR, (d) AR and 

LPI. 
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infinitely many alternating busy 46��� and idle 45��� periods, 

where the index n denotes the order of the interval. During a 

generic	46���, the server is active and performing packet 

forwarding activities, and then has instantaneous power 

consumption equal to  !����. Afterwards, when it serves 

the last backlogged packet, it enters the 45��� period 

corresponding to the low-consumption �� state. 

 
Fig. 2. Power consumptions during a renewal busy-idle cycle. 

However, transitions between the active state �� to the �� 

state are not instantaneous, and a transition time ����  is 

required. When new packets are received, the device has to 

wake-up by exiting the �� state and returning to the active 

one (this requires an additional ��� period). Furthermore, 

depending on the specific device architecture and 

implementation, an additional time ����� is required to setup 

and to suitably configure the packet elaboration process. It is 

worth noting that, while ��� and ����  depend on the 

sleeping �� state, the ����� parameter depends on the �� 

state, since it represents a certain number of operations that 

have to be performed by the server, before starting packet-

forwarding operations. The instantaneous power 

requirements can be expressed as follows: 

 �? "#$�����																														if	the	server	is	in	the	��	state	 !����																																			if	the	server	is	in	the	��	state �����									if	the	server	is	moving	between		��	and	�� 	       (1) 

As in most COTS platforms ���� ≪ ���, in the model 

derived in this paper, we neglect the ���� period. 

B. The Traffic Model 

The modeling and the statistical characterization of 

packet inter-arrival times are well known to have Long 

Range Dependency (LRD) and multi-fractal statistical 

features [10] [11]. However, as sustained more recently in 

[12] and [13], a Batch Markov Arrival Process (BMAP) can 

effectively estimate the network traffic behavior. Therefore, 

we decided to model incoming traffic through a BMAP with 

LRD batch sizes. We assume to receive groups of j packets 

at exponentially distributed inter-arrival times with average 

value equal to 1/&. The sizes j of packet batches are 

supposed to follow Zipf’s law (which can be regarded as the 

discrete version of a continuous Pareto probability 

distribution with parameter s). In more detail, we assume 

that incoming packet batches have the following probability 

mass function: 

'( � R �(ST∑ VWSXYZ[W\V ] 									^ ≤ ^̀ !�0																										^ > ^̀ !�	                                                        (2) 

where '( represents the probability that an incoming burst 

contains j packets, with ^ ∈ ,1, ^`!�.. The average packet 

number in a batch, ', is then obtained as: 

' � ∑ VWSbVXYZ[W\V∑ VWSXYZ[W\V                                                                                      (3) 

Thus, we obtain the Probability Generating Function 

(PGF) of batch sizes as: 

)�*� � ∑ '(*(c(d� � ∑ eX(ST∑ VWSXYZ[W\V ](YZ[(d�                                                (4) 

C. The Proposed Queuing Model 

The model we propose corresponds to a M
x
/D/1/SET 

queuing system [14]. Packets arrive in batches with 

exponentially distributed inter-arrival times with average 

rate	&, and are served by a single server at a fixed rate	�. In 

order to take the LPI transition periods into account, the 

model considers deterministic server setup times. When the 

system becomes empty, the server is turned off. The system 

returns operative only when a batch of packets arrives. At 

this point in time service can begin only after an interval ������ � ��� � ����� has elapsed. 

The rest of this section introduces the analytical model 

and its specialization to our case. In sub-section III.C.1 we 

derive the PGF and the stationary probabilities of the 

M
x
/D/1/SET queuing system; in sub-section III.C.2 we 

express the server’s idle and busy periods. Then, we propose 

an approximation for the packet loss probability in the case 

of a finite buffer of size N and derive network- and energy-

aware performance indexes in subsections III.C.3 and 

III.C.4.  

1) The PGF and the stationary probabilities 

In order to obtain the values of stationary probabilities P
n
 

for + ∈ ,0,∞., we exploit the PGF of the M
x
/G/1 system as 

shown in [15] and [14]: 

��*;i�/j/1� � �1 − /� ��le�6�mlm	�e��6�mlm	�e��le                                (5) 

Under the assumption that service times are deterministic, 

we can express the Laplace transform of service times as: 1�2� � nl�/o                                                                               (6) 

Thus, we obtain that the PGF of the M
x
/D/1 queuing 

system can be written as: 

��*,i�/p/1� � �1 − /� ��le��bqr�Vbs�t���bqr�Vbs�t��le                                   (7) 

By exploiting the stochastic decomposition results of 

Doshi [16] for the single unit arrival case and the results in 

[14] for bulk arrivals, the PGF of the M
X
/G/1 queue with 

setup times turns out to be: �u�*� � v�*���*,i�/p/1�                                                        (8) 

where 

v�*� � �lew�mlm	�e��TVxymz]��l	�e��                                                                    (9) 

is the PGF of the number of arrivals during the residual life 

of the vacation period, defined as an idle period plus a setup 

period ������ (for the sake of simplicity, throughout the rest 

of the paper we indicate ������ with �). Since server setup 

times have constant durations equal to �, we can express 3�2� as 	3�2� � nlz�                                                                                   (10) 

By using Eqs. (9) and (10) in Eq. (8), we can obtain the 

PGF of our M
x
/D/1/SET system: 

�u�*� � �1 − /� �le�bq{,Vbs�t�.TVxymz],�l	�e�.
��le��bqr,Vbs�t�.
�bqr,Vbs�t�.le                                   (11) 

Remembering that the PGF is defined as: �u�*� � ∑ ��*�c�d�                                                                      (12) 

we can obtain the state probabilities �� by calculating the 

Taylor series’ coefficients of the �u�*� function: 

�� � ��! }
~

}e~ �u�*��ed�                                                                       (13) 

Notwithstanding these coefficients can be obtained in closed 

form through simple derivation operations, we preferred to 

t

Φ(t)

Φa(Py)

Φidle(Cx)

Φt(Cx)

τon τoff

τconf
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evaluate such derivatives numerically, since numerical 

evaluation has a lower computational complexity than 

calculating the closed-form expressions of the derivatives at * � 0. 

2) The server idle and busy times 

Under server traffic utilization	/ < 1, a G/G/1 queuing 

system will become empty infinitely often. This obviously 

remains true also for our M
x
/D/1/SET model. Hence, using 

classical principles of renewal theory, we can identify 

independent and identically distributed (iid) “cycles” of the 

form: 47��� � 45��� � 46���                                                                          (14) 

where 46��� is the n
th

 busy period, (corresponding to the 

“delay busy period” in [14], which includes the setup time), 

and 45��� is the n
th

 idle period. In more detail, both sequences 46��� and 45��� can be demonstrated to be iid. The average 

duration of idle and busy period are given by: 45 � �	=45���> � �m 46 � �m ��l� � �z�l�                                             (15) 

We can obtain 47 as follows: 

47 � 45 � 46 � Vqy�z�l�                                                                      (16)  

3) Network performance indexes 

Starting from the stationary probabilities �� obtained in 

sub-section III.C.1, as well as the idle and busy periods in 

sub-section III.C.2, we can easily derive a large set of 

network performance indexes. The mean value �� of packets 

in the queuing system can be obtained by specializing the 

general expressions in [14] to our case of deterministic 

service time and Zipf-distributed packet batches: 

�� � ���e→� ��u�*� � �m�zym���z�l�y∑ �X(�XYZ[X\V���ym�z� �
	��l�y∑ �X(�XYZ[X\V���l��

              (17) 

Using Little’s law, the average waiting time ��  is: 

�� � ���� � �zym�z�lVqy Vqx∑ �X(�XYZ[X\V���ym�z� �
��l�y∑ �X(�XYZ[X\V�m���l��

                                             (18) 

It is worth noting that both the �u�*� function in Eq. (8) 

and the stationary probabilities �� in Eq. (13) are referred to 

the M
x
/D/1/SET queue with an infinite buffer. However, by 

assuming a low value of loss probability and similarly to 

[17], we can approximate the stationary probabilities of the 

finite buffer queuing system with the ���, ��, … , ��
 
probabilities of the M

x
/D/1/SET queue. In more detail, the 

average value of packet loss probability can be expressed 

through the following approximation: �$��� � 1 − ∑ ����d�                                                                         (19) 

The approximation might be used also to re-compute �� 
and ��  for the finite buffer case. However, if ��822 is minute 

(as it actually turns out to be in most practical cases), Eqs. 

(17) and (18) already provide a good approximation. 

4) The Energy Consumption 

Recalling Fig. 2 and Eq. (1), we can express the average 

energy consumed in a renewal cycle as follows:  � � ,�Z∙���lz�~�y��∙z�~y�W���∙��.��                                                 (20) 

and by using Eqs. (15) and (16) in Eq. (20): 

 � � ��ZTVq�y�zl��l��z�~]y��l��Tz�~��yVq�W���]�Vqy�z                        (21) 

IV. MODEL VALIDATION 

In order to validate the proposed model, we took the 

multi-core Linux SW Router (SR) used in [8] as a term of 

comparison. This choice is mainly due to the fact that 

current HW routers do not include AR and LPI capabilities, 

and only their nominal and/or maximum power 

consumptions are reported in the datasheets. 

The considered SW Router is equipped with several 

Gigabit Ethernet adapters with Receive-Side Scaling (RSS) 

support [18]. Eight cores, placed in two Xeon 5550 

processors, perform all packet forwarding operations in a 

fully parallel and independent way among themselves. Each 

processor core includes AR and LPI capabilities in terms of 

4 available P-states, and 3 C-states (including the C0 one), 

respectively. Previous experimentations on SW router 

architectures [8] suggest to use the values indicated in Table 

II for the ��� parameter, and to fix	����� � �l�. In this 

scenario, our model represents the behavior of each single 

core, serving packets from reception interfaces. The 

parameters & and ' parameters are respectively the arrival 

rate and the average size of traffic batches processed by the 

considered core. For the sake of simplicity, we decided to 

show the validation results for a single processor core, 

receiving traffic from a single Gigabit Ethernet interface 

with a reception buffer size equal to 512 packets, and 

forwarding it towards another Gigabit Ethernet link. We 

performed the SW router experimentations and the proposed 

model estimation by using real-world traffic traces that are 

publicly available [19] and part of “A Day in the Life of the 

Internet” [20]
2
. We used a 96-hour-long traffic trace divided 

into sequential time windows of 15 minutes. Thus, for each 

time window, we obtained energy- and network-aware 

performance indexes both with the SW router and with the 

proposed model. The SW router measurements were 

performed by using the test-bed composed by an Ixia N2X 

router tester [21] to reproduce traffic traces, and to measure 

packet losses and latency times with high accuracy levels, 

and an Agilent U2353A multifunction Data Acquisition 

(DAQ) device [22], to measure the processor power 

consumption. As far as the proposed model is concerned, for 

each time window, we used the	&,	', s, and jmax values 

calculated from the traffic trace. In detail, s and jmax 

parameters were obtained by least squares fitting of the Zipf 

distribution in Eq. (2) with the trace sample. The evolution 

of the traffic offered load over the time of the reference 

traffic trace is reported in Fig. 3 in terms of burst arrival 

rates and burst sizes. The minimum value of traffic loads is 

from 3:00 to 6:00, while rush hours occur at 11:00 and 

14:00. It is interesting to underline how an increase in 

incoming traffic volume is due to the rise of both burst 

arrival rate and burst sizes. Fig. 4 reports the power 

consumption values estimated by the analytical model 

(AM), the values measured with the experimental test-bed, 

and the maximum estimation error in each time window. 

The AM estimation was obtained with Eq. (21). 

The results in Fig. 4 outline the good accuracy level 

provided by the model. Moreover, they suggest that 

selecting too deep stand-by states may cause a rise on power 

consumption. This is simply caused by the non-negligible ��� times to enter the deepest C-state. When the probability 

that burst inter-arrival time is larger than � drops, the device 

 
2 In order to meet the Software Router capacities in Table III, we 

increased the traffic volumes in the original trace by a scaling factor of 30. 
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enters low-power sleeping states more and more rarely and 

for shorter periods, before waking up again. Figs. 5 and 6, 

respectively, show the average values of loss probability 

and packet latency times for both the SR and the AM, as 

well as the relative estimation error. The AM estimates of 

latency times were obtained with Eqs. (17) and (18), and 

loss probabilities were computed as in Eq. (19). Such 

results show that the proposed AM represents also network-

aware performance indexes with a good accuracy level, 

since the errors are lower than 0.1% for loss probabilities, 

and lower than 2% for latency times. Regarding the AM 

complexity and execution times, the former depends linearly 

on the buffer size N, and the latter never exceeds 150 ms. 

  

V. ENERGY-AWARE CONTROL 

The proposed model can be viewed as an interesting 

estimation tool, which can be adopted for controlling AR 

and LPI capabilities in next-generation network devices. 

The model can be included in the optimization procedures in 

order to dynamically and optimally change the energy-aware 

device configuration with respect to the estimated traffic 

load and performance requirements [9]. Such optimization 

procedures have to periodically select the optimal pair of =�� , ��> states, which minimizes the device’s power 

consumption while meeting the estimated load and network 

performance requirements (i.e., loss rate, latency times, 

etc.). Thus, given the estimate of incoming traffic load, in 

terms of	&,	',	^̀ !� and s, the optimization problem can be 

formalized as: 

	?��+= [,¡¢> ��&, '��� ≤ �∗											�$��� ≤ �$���∗ 								                                 (22) 

where �∗ and �$���∗  are the maximum admissible average 

values of latency and loss probability, respectively. Thus, 

the optimization procedure starts by considering all the =�� , ��> pairs that satisfy the performance constraints in Eq. 

(22). This is performed by estimating the average latency 

values with Eq. (18), and the loss probabilities through Eq. 

(19), by numerically obtaining the first N coefficients of the 

Taylor series expansion of the PGF in Eq. (13). For all the =�� , ��> pairs satisfying the above constraints, we calculate 

the estimated value of the average power consumption with 

Eq. (21). The configuration guaranteeing the minimum 

TABLE II – POWER CONSUMPTIONS AND TRANSITION TIMES  

OF THE DEVICE’S C-STATES 

 �� state  "���� ���	 
C0 Active Active 

C1 10 Watt 10 ns 

C2 8 Watt 100 ns 

. TABLE III – POWER CONSUMPTIONS AND FORWARDING CAPACITIES 

OF THE DEVICE’S P-STATES. �� state  !���� � 

P3 50 Watt 650 kpkts/s 

P2 60 Watt 770 kpkts/s 
P1 70 Watt 890 kpkts/s 

P0 80 Watt 1010 kpkts/s 
 

Fig. 3. Average values of & and ' measured in the traffic trace in [19]. 
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Fig. 4. Energy consumption estimated by the analytical model according to various configurations of C- and P-states, 
and maximum estimation error of the analytical model with respect to the SW router per each time slice. 

 

Fig. 5. Packet loss probability estimated by the AM and measured on the SR 
with respect to different P- and C-states, and maximum relative estimation error. 

 

Fig. 6. Average packet latency estimated by the AM and measured on the SR 

 with respect to different P- and C-states, and maximum relative estimation error. 
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consumption is finally selected. 

VI.  PERFORMANCE EVALUATION 

In this section, we provide a performance evaluation of 

the optimization procedure introduced in section V. To this 

purpose, we exploited the same test-bed described in section 

IV. The optimization procedure works in every time 

window, by finding the best =�� , ��> pair that minimizes 

energy consumption and satisfies the packet latency and loss 

constraints. The performance constraints of the model were 

�∗ = 10	�2, and �$���
∗ = 10l¤. We decided to let the 

optimization procedure know the exact values of time 

window traffic parameters (&, ', ^`!�  and s) in advance. 

This choice gives us the chance of evaluating the 

optimization procedure performance in the absence of errors 

due to incoming traffic estimation. The results in Figs. 7 and 

8 only depend on the accuracy level of the AM. We decided 

to take the =�1, �0> SR configuration as a term of 

comparison, since it represents the most “conservative” case 

for network performance. Fig. 7 reports the power 

consumption for both cases considered, and underlines how 

the optimization procedure allows saving about 16-17% of 

energy with respect to the fixed ��1,�0
 configuration. 

Regarding network performance, Fig. 8 shows that the 

latency constraint is fully satisfied in all the time windows. 

Moreover, we reported in Fig. 8 also the performance of the 

=�2, �3> configuration, which, contrarily to the optimization 

procedure results, overcomes the constraint in several cases. 

The measured values of packet loss probability confirm the 

fulfillment of network performance constraints. 
 

 
Fig. 7. SR energy consumption values with both the optimization procedure 

and the fixed pair ��� , ��
. The energy savings of the optimization 

procedure with respect to the ���, ��
 pair are also reported. 

VII. CONCLUSIONS 

In this contribution, we focused on performance-adaptive 

network devices, able to save energy by scaling their traffic 

processing capacities through AR and LPI mechanisms. We 

proposed a novel analytical model able to capture the impact 

of power management capabilities on network performance 

metrics. The analytical framework considers stochastic 

incoming traffic at packet level with LRD properties. The 

validation results were performed by using a Linux-based 

SR with AR and LPI primitives and real-world traffic traces, 

and demonstrate how the proposed model can effectively 

represent energy- and network-aware performance indexes. 

Moreover, also an optimization procedure based on the 

model has been proposed and experimentally evaluated. The 

results show that such procedure can allow saving more than 

16-17% of energy with respect to a device with only LPI 

capabilities enabled. 
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