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Abstract—Mobile cloud is a machine-to-machine service model,
where a mobile device can use the cloud for searching, data
mining, and multimedia processing. To protect the processed data,
security services, i.e., encryption, decryption, authentications, etc.,
are performed in the cloud. In general, we can classify cloud
security services in two categories: Critical Security (CS) service
and Normal Security (NS) service. CS service provides strong
security protection such as using longer key size, strict security
access policies, isolations for protecting data, and so on. The CS
service usually occupies more cloud computing resources, however
it generates more rewards to the cloud provider since the CS
service users need to pay more for using the CS service. With
the increase of the number of CS and NS service users, it is
important to allocate the cloud resource to maximize the system
rewards with the considerations of the cloud resource consumption
and incomes generated from cloud users. To address this issue,
we propose a Security Service Admission Model (SSAM) based
on Semi-Markov Decision Process to model the system reward
for the cloud provider. We, first, define system states by a tuple
represented by the numbers of cloud users and their associated
security service categories, and current event type (i.e., arrival or
departure). We then derive the system steady-state probability and
service request blocking probability by using the proposed SSAM.
Numerical results show that the obtained theoretic probabilities
are consistent with our simulation results.

I. INTRODUCTION
Mobile cloud computing relies on a machine-to-machine

computing model, in which mobile devices outsource their
computing tasks to the cloud [1]. In this work, our research fo-
cuses on the resource allocation for security services of mobile
cloud (such as authentication, digital signature, audition, etc.)
to mobile devices. Fig. 1 shows the basic structure of mobile
cloud service provisioning. In specific, when a mobile device
requests a security service to the cloud, the system admission
control model consults the system resource management model
about the availability of system resource, i.e., Virtual Images
(VIs) in our following discussion. Each VI manages a portion
of cloud system resources (CPU, storage, etc.). If there are
available VIs and the request is accepted, then a VI or several
VIs will be allocated to that security service by the system
resource management model.
In this paper, we consider that there are two types of security

services, as shown in Fig. 1: (i) Critical Security (CS) service,
and (ii) Normal Security (NS) service. In [2], the authors had
pointed out that in order to provide cloud security service,
it is necessary to provide resource isolation among different
cloud users. This is especially critical for security services since
sharing resources (e.g., memory) enable attackers to explore the

system vulnerability [3]. To provide enhanced security services,
we need to separate the resources (i.e., VIs) allocated for
different security processes owned by different users. In other
words, each of CS and NS service subscribers will be allocated
a unique VI or unique VIs when he/she requests the cloud
resources.
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Fig. 1. Reference Model of Mobile Cloud Computing.

To construct an efficient resource allocation model for mo-
bile cloud security services, we present an admission control
mechanism based on the total cloud system reward, which takes
into account both the cloud income and the cost of the resource
occupation. Thus, the system reward is computed in the system
resource management model based on the following factors: (i)
the arriving and departing rates of CS and NS services, (ii) the
numbers of running CS and NS services in the system, (iii) the
available total system resource (measured by the numbers of
VIs), (iv) the reward for CS or NS service. In general, the CS
service involves more complex security implementations such
as stronger authentication and encryption algorithms, longer
key size, more strict security access policies, and so on. As a
result, the CS service usually consumes more cloud resources
such as CPU time to compute the complex cryptography
algorithms and occupies more hard drive spaces (i.e., strict
resource isolation requires that no storage sharing is allowed).
Usually, users need to pay more for CS services, which means
higher reward to the mobile cloud service provider. To satisfy
the security service requirements of end users, i.e., either CS
service or NS service, the mobile cloud needs to consider how
to admit mobile users’ service requests to obtain the maximal
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system reward with the limited cloud resource.
To address the above presented admission issue for secu-

rity service requests, we propose a Security Service Admis-
sion Model (SSAM) based on Semi-Markov Decision Process
(SMDP) [4] to leverage the maximal system rewards with the
system resource constraints. The contributions of our solutions
are two-fold:

• We apply the Semi-Markov Decision Process to analyze
the system reward of different security services, and derive
the optimal resource allocation policy in the mobile cloud
computing.

• We propose SSAM to derive the cloud service blocking
probability and achieve the maximum system gain of the
mobile cloud by considering both system expenses and
incomes (i.e., considering the system reward).

The remainder of this paper is organized as follows. The
related work is presented in Section II. In Section III, we
present our system models. The Semi-Markov Decision Process
model (SMDP) for mobile cloud computing is developed in
Section IV. Based on the SMDP model, we derive the blocking
probability in Section V. The system performance is evaluated
in Section VI, following by concluding remarks and future work
in Section VII.

II. RELATED WORK

Recent research has been focused on Cloud computing for
mobile devices [5], which enables running applications between
resource-constrained devices and Internet-based Clouds. The
problem of ensuring the integrity of data storage in Cloud
Computing is studied in [6] and [7]. In [8], an economic
cloud computing model is presented to decide how to manage
the computing tasks with a given configuration of the cloud
system. A game theory-based resource allocation model to
allocate the cloud resources according to users’ QoS require-
ments is proposed in [9]. Although resource management in
wireless networks has been extensively studied in [10], [11],
and [12], existing mobile cloud solutions are limited and are
solely focused on the enhancement of the individual mobile
device’s capability. In addition, much of the previous works for
cloud security focused on the security to enhance security of
Clouds themselves, such as infrastructure security [13], based
on TCG/TPM, secure outsourcing [14], and Cloud web security
[15], etc. To the best of our knowledge, none of them addressed
how to construct a system reward model for resources allocation
by considering prioritized cloud security services.

III. SYSTEM DESCRIPTION
To improve security for cloud computing, two basic security

services are provided, namely, NS and CS services. NS service
only uses basic security approaches such as authentication
to validate the users, and it usually involves low-complexity
computing and access control tasks. CS service provides more
security services such as confidentiality, digital signature, ac-
cess control, audition, anti-virus scanning, etc. To simplify
the notations, we denote NS and CS services as l and h,
respectively.
In our model, the cloud resources are divided into K por-

tions, and each portion represents a VI.

In the cloud, mobile users can choose the desired security
services l or h, which occupies αl VIs and αh VIs, (0 <
αl + αh < K), respectively. With the limitation of cloud
resources (i.e., VIs), it is critical to allocate the resources to
maximize the system reward, i.e., leverage the cloud service
incomes and system running expenses. In other words, the cloud
should decide whether to accept or reject a security service
request (l or h) based on the currently available cloud resources
and the arrival rate of potential future security service requests.
The arrival rates of security services l and h follow the

Poisson distribution with mean rates λl and λh, respectively.
The cloud resource occupation time follows the exponential
distribution with mean 1/μl and 1/μh, respectively. In the fol-
lowing, we present the system states, the actions, and the reward
model for the presented mobile cloud computing system.

A. System States
An arrival request of security service l or h can be considered

as an incoming event, and a departure of a service l or h can
be considered as a leaving event. Thus, in the system model,
we define three service events: 1) The cloud receives a request
of security service l from a user, denoted by el; 2) The cloud
receives a request of security service h from a user, denoted
by eh; and 3) The transaction of a security service completes
and associated VIs are released, denoted by ef . The number
of security service l and security service h being served in the
cloud are denoted as Nl and Nh, respectively. Therefore, the
system state can be expressed as:

S = {s|s = 〈ŝ, e〉},

where ŝ = 〈Nl, Nh〉, e ∈ {el, eh, ef}, and 0 ≤ αlNl+αhNh ≤
K .

B. Actions
In system state ŝ, upon receiving a service request, (e.g.,

el or eh), two actions can be selected by the mobile cloud:
accept and reject, which are denoted by a〈bs,el/eh〉 = 1 and
a〈bs,el/eh〉 = 0, respectively. When a departure occurs, the cloud
releases the cloud resources and there is no action in this case.
Thus, we define a〈bs,e

f
〉 = 0. Accordingly, the action set is

A = {a〈bs,e〉|a〈bs,e〉 ∈ {0, 1}}.

C. Reward Model
The system net reward can be evaluated based on the service

incomes and the running expenses:

x(s, a) − τ(s, a)y(s, a), (1)

where x(s, a) is the net lump sum incomes for the cloud when
action a is chosen at the current state s, y(s, a) is the service
holding cost rate when the cloud is in state s and action a
is selected, and τ (s, a) is the expected service time from the
current state s to the next state when decision a is selected.
x(s, a) is computed as:

x(s, a) =

⎧⎨⎩
0, a〈bs,e〉 = 0,
Rl, a〈bs,el〉 = 1,
Rh, a〈bs,eh〉 = 1,

(2)
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Fig. 2. State transition Diagram.

where Rl and Rh are an income of the cloud when an l and an
h security service request is accepted, respectively. The service
holding cost rate y(s, a) is proportional to the occupied cloud
resources, which is given by

y(s, a) =

⎧⎨⎩
αlNl + αhNh, a〈bs,e〉 = 0,
αl(Nl + 1) + αhNh, a〈bs,el〉 = 1,
αlN l + αh(Nh + 1), a〈bs,eh〉 = 1.

(3)

IV. SMDP BASED MOBILE COMPUTING MODEL

A general SMDP model consists of six elements [4]: 1)
system states; 2) action sets; 3) the events; 4) decision epochs;
5) transition probabilities, and 6) rewards. A decision epoch
is the time instant when any of the events takes place, e.g.,
a request of service l or h arrives, or a security service
is finished and the allocated resources of VIs are released.
The time duration between two decision epoches follows an
exponential distribution. Denote τ (s, a) as the expected time
duration between two decision epoches, given the current state
s and action a.
Thus, we have

τ (s, a) =

⎧⎨⎩
[γ + a〈bs,el〉μl]

−1
, e = el

[γ + a〈bs,eh〉μh]
−1

, e = eh

γ−1, e = ef

(4)

where γ = λl + λh + Nlμl + Nhμh.
The state transition in a Markov decision model is shown in
Fig. 2. Denote q(j|s, a) as the state transition probability from
state s to j when action a is chosen. For a state s = 〈ŝ, e〉 where
ŝ = 〈Nl, Nh〉, e ∈ {el, eh, ef}, and action a = 0, the next state
can be j1 = 〈Nl, Nh, el〉, j2 = 〈Nl, Nh, eh〉, j3 = 〈Nl −
1, Nh, ef 〉 (N1 ≥ 1 ), and j4 = 〈Nl, Nh − 1, ef〉 (Nh ≥ 1).

q(j|s, a) can be obtained as

q(j|s, a) =

⎧⎪⎪⎨⎪⎪⎩
λlτ(s, a), j = j1
λhτ (s, a), j = j2
Nlμlτ(s, a), j = j3
Nhμhτ(s, a), j = j4

(5)

Note that 0 ≤ αlNl + αhNh ≤ K .
For the current state s = 〈ŝ, el〉, and the action a = 1, the

next state can be j5 = 〈Nl + 1, Nh, el〉, j6 = 〈Nl + 1, Nh, eh〉,
j7 = 〈Nl, Nh, ef 〉, and j8 = 〈Nl + 1, Nh − 1, ef〉 (Nh ≥ 1).
Thus, q(j|s, a) can be obtained as:

q(j|s, a) =

⎧⎪⎪⎨⎪⎪⎩
λlτ (s, a), j = j5
λhτ (s, a), j = j6
(N l + 1)μlτ (s, a), j = j7
Nhμhτ (s, a), j = j8

(6)

Similarly, for state s = 〈ŝ, eh〉 and action a = 1, the next
state can be j9 = 〈Nl, Nh + 1, el〉, j10 = 〈Nl, Nh + 1, eh〉,
j11 = 〈Nl − 1, Nh + 1, ef〉(Nl ≥ 1), and j12 = 〈Nl, Nh, ef 〉.
Thus, q(j|s, a) can be obtained as

q(j|s, a) =

⎧⎪⎪⎨⎪⎪⎩
λlτ (s, a), j = j9
λhτ (s, a), j = j10
N lμlτ (s, a), j = j11
(Nh + 1)μhτ(s, a), j = j12

(7)

Applying the discounted reward model [4], the expected
discounted reward during τ (n, a) satisfies:

z(s, a) = x(s, a) − y(s, a)Ea
bs

{∫ τ1

0

e−αtdt

}
= x(s, a) − y(s, a)Ea

bs

{
[1 − e−ατ1 ]

α

}
= x(s, a) −

y(s, a)τ (s, a)

1 + ατ(s, a)
, (8)
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where x(s, a) and y(s, a) are defined in (2) and (3). The
maximum long term discounted reward is given by

ν(s) = max
a∈A

⎧⎨⎩z(s, a) + λ
∑
j∈S

q(j|s, a)ν(j)

⎫⎬⎭ (9)

where λ = (1 + ατ(s, a))−1. Let w be a finite constant,
w = λl+λh+K ∗max(μl, μh) < ∞, and λ̃ = w/(w+α). The
optimality equation of ν(s) can be obtained after uniformiza-
tion,

ν̃(s) = max
a∈Ã

⎧⎨⎩z̃(s, a) + λ̃
∑
j∈S

q̃(j|s, a)ν̃(j)

⎫⎬⎭ (10)

where z̃(s, a) ≡ z(s, a) 1+ατ(s,a)
(α+w)τ(s,a) , and

q̃(j|s, a) =

{
1 − [1−q(s|s,a)]

τ(s,a)w , j = s
q(j|s,a)
τ(s,a)w , j 
= s.

(11)

V. BLOCKING PROBABILITY

The blocking probability is an important QoS metric for a
mobile cloud system. In this section, we derive the blocking
probability using the proposed SMDP-based SSAM.
The expected total discounted reward ν̃(s) at state s ∈ S

is dependent on λl, λh, μl, μh and K , as shown in (10). Our
objective is to find a decision rule that maximizes the total
reward at each state, ν̃(s), ∀s. In specific, when a security
service request arrives, the system resource management model
checks ν̃(s) of the current state under different actions, i.e.,
a = 0, or a = 1, and select an action with a higher reward.
We derive the steady state probability, denoted as π〈Nl,Nh,e〉

for state 〈Nl, Nh, e〉 in SSAM as shown in Fig. 2. We
use states (j1, .. j12) defined in Section IV to simplify the
notation. Similarly, let j13 = 〈N l, Nh − 1, eh〉(Nh ≥ 1),
j14 = 〈N l − 1, Nh, el〉(Nl ≥ 1).
The stead state probability of π〈Nl,Nh,e〉 can be derived as

follows

πj1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − aj1)πj1
w+λl−β

w + (1 − aj2)πj2
λl

w Nl = 0, Nh = 0

+aj1πj1
w−β−μl

w + πj7
λl

w ,

(1 − aj1)πj1
w+λl−β

w + (1 − aj2)πj2
λl

w Nl = 0, Nh > 0

+aj1πj1
w−β−μl

w + πj7
λl

w + a
j13

π
j13

λl

w ,

(1 − aj1)πj1
w+λl−β

w + (1 − aj2)πj2
λl

w Nl > 0, Nh = 0

+aj1πj1
w−β−μl

w + πj7
λl

w + aj14πj14
λl

w ,

(1 − aj1)πj1
w+λl−β

w + (1 − aj2)πj2
λl

w

+aj1πj1
w−β−μl

w + πj7
λl

w Nl > 0, Nh > 0

+a
j13

π
j13

λl

w + aj14πj14
λl

w ,
(12)

πj
2

=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − aj
1
)πj

1

λh

w + (1 − aj
2
)πj

2

w+λh−β
w Nl = 0, Nh = 0

+aj
2
πj

2

w−β−μh

w + πj
7

λh

w ,

(1 − aj
1
)πj

1

λh

w + (1 − aj
2
)πj

2

w+λh−β
w Nl = 0, Nh > 0

+aj
2
πj

2

w−β−μh

w + πj
7

λh

w + a
j
13

π
j
13

λh

w ,

(1 − aj
1
)πj

1

λh

w + (1 − aj
2
)πj

2

w+λh−β
w Nl > 0, Nh = 0

+aj
2
πj

2

w−β−μh

w + πj
7

λh

w + aj
14

πj
14

λh

w ,

(1 − aj
1
)πj

1

λh

w + (1 − aj
2
)πj

2

w+λh−β
w

+aj
2
πj

2

w−β−μh

w + πj
7

λh

w Nl > 0, Nh > 0

+a
j
13

π
j
13

λh

w + aj
14

πj
14

λh

w ,
(13)

where β = Nlμl + Nhμh + λl + λh, 0 ≤ αlNl + αhNh ≤ K .
As the total probability equals to 1, we have∑

Nl

∑
Nh

π〈Nl,Nh,e〉 = 1. (14)

Solving Eq. (12 - 14), the steady-state probability π〈Nl,Nh,e〉

can be iteratively obtained. The blocking probability Pblocking ,
defined as the ratio of the number of rejected requests and the
total number of service requests, is thus given by

Pblocking =

P
Nl

P
Nh

((1−aj1
)πj1

+(1−aj2)πj2)
P
Nl

P
Nh

(πj1
+πj2)

,

for αlNl + αhNh ≤ K,

(15)

where aj1 , aj2 ∈ A are the actions adopted at states 〈N l,Nh, el〉
and 〈N l,Nh, eh〉, respectively.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed

SSAM using a simulator written in matlab. We set up a cloud
system with the total number of VIs from 2 to 15. The request
arrival rates of services l and h are 5 and 2 per unit time,
respectively, and the average service holding time of each
connection is μl = μh = 6 unit times, if not otherwise
specified. A service h occupies two VIs while l occupies one VI
when it is accepted. Accordingly, an income of 0.3 for l and 0.6
for h are added to the cloud system. We set the discount factor
α = 0.1 to assure the convergence of the reward computation.

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The Number of Virtual Images 

B
lo

ck
in

g 
P

ro
ba

bi
lit

y 
(l)

λ
l
=5, λ

h
=2, simu

λ
l
=5, λ

h
=2, anal

λ
l
=5, λ

h
=5, simu

λ
l
=5, λ

h
=5, anal

Fig. 3. Blocking probability of service l under various arrival rates.

The blocking probabilities of services l and h under various
arrival rates of service requests are shown in Fig. 3 and
Fig. 4, respectively. A lower blocking probability is achieved
when more network resources, e.g., VIs, are available. Because
service h requires two times cloud resources than service l,
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Fig. 4. Blocking probability of service h under various arrival rates.

h is more likely to be rejected, especially when the cloud
resource is limited, e.g., only two VIs in the cloud. Therefore,
the blocking probability of service h is larger than that of
service l accordingly. We further increase the arrival rate of
service h from 2 to 5 per unit time. It can be seen that the
blocking probability increases with the traffic arrival rates for
a given the network resource.
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Fig. 5. Blocking probability of service l under various service occupation
times.
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Fig. 6. Blocking probability of service h under various service occupation
times.

The blocking probabilities of different services under various
service departure rates are shown in Fig. 5 and Fig. 6. With a
larger service holding time, the system cost of each mobile
user increases, which results in a degraded system reward.
Therefore, a new request is more likely to be rejected. The
blocking probability decreases with the service occupation time
for both services l and h.

VII. CONCLUSION
In this paper, we have proposed a SSAM based on SMDP

considering both the maximal system reward and system service
expenses. The system reward is derived through SSAM by tak-
ing into considerations of the CS/NS service rewards and their
cloud system expenses. We derive the blocking probabilities
of SSAM and conduct extensive simulations to validate our
analysis. In the future, we will investigate the optimal system
resources (i.e., the number of VIs) to obtain the maximal system
rewards under the given blocking probability. In addition, we
will incorporate more system metrics into the constructions of
the reward function such as different application tasks as well.
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