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Abstract—Analysis of attacks on real-world p2p networks and
their impact on the topology of the network is difficult as the
interconnections among the peers are not random; rather they
evolve based on the needs of the connected peers and this
brings in degree-degree correlation in the network. We develop
an analytical framework to analyze the change in topology of
a correlated network and propose a generalized model based
on percolation theory to measure the resilience of a correlated
network against any arbitrary attack. We present the results and
analysis mainly on correlated superpeer networks and correlated
bimodal networks. Some of the intricate questions on the stability
of real-world superpeer network that we answer analytically are:
(a) dependence of percolation threshold of a superpeer network
on its peer degree, superpeer degree at different levels of degree-
degree correlation (b) minimum peer degree required to make a
superpeer topology more resilient. All our theoretical results are
validated through simulations and the results are in very good
agreement.

I. INTRODUCTION

Popular peer-to-peer networks like Gnutella, Kazaa are

increasingly subjected to various kinds of attacks like De-

nial of Service attack (DoS), DDoS attack, Eclipse attack,

Sybil attack etc [1]. All these attacks try to interrupt the

network-wide peer communication by disrupting the activities

of the highly connected (resourceful) nodes. Besides, the

continuous churn of the constituent nodes may also lead to

interruption in the network-wide communication. Analytical

work predicting the outcome of such churn and attack on

large dynamic networks has been studied in depth [2]–[5],

in the last decade. The results are primarily based upon the

concept of percolation theory whereby the relation between

component size and attack is established. These works have

been successfully extended in the domain of p2p networks [6],

[7], where Mitra et al. developed a generalized analytical

framework to measure the deformed degree-distribution and

stability of uncorrelated superpeer networks. (Note: Most of

the popular p2p networks maintain a superpeer architecture

comprising of some very powerful ultrapeers and the rest

low bandwidth peers). However, we observe that although the

framework quite accurately predicts the changes in Gnutella1

(taken as representative real-life superpeer network) topology

1The snapshots have been obtained from the Multimedia & Internetworking
Research Group of University of Oregon, USA [8]. The snapshot is obtained
by the research group during September 2004 and the size of the network
simulated from the snapshot is of 1, 31, 869 nodes.

under random failure (fig. 1(a)), there is a distinct deviation

in case of intentional attack (fig. 1(b)).

Current research reveals that superpeer networks (like most

real networks) evolve through the complex and unsupervised

interactions among peer nodes and this eventually leads to

network heterogeneity. These complex interactions among the

peers of the network make the vulnerability analysis very

difficult as they behave differently under given conditions. For

example, it has been observed in many real networks, that a

relatively localized damage in one network may lead to failure

in another, triggering a disruptive avalanche of cascading and

escalating failures. In [9], Vespignani showed that this kind

of dangerous vulnerability is indeed due to the heterogeneity

present in the network. In [10], Buldyrev et al. addressed this

issue and showed that analyzing complex systems as a set of

interdependent networks destabilizes the most basic assump-

tions that network theory has relied on for single networks.

Hence, in the design of resilient infrastructures, understanding

the fragility induced by multiple interdependencies is presently

one of the major challenges.

In superpeer networks, beyond the heterogeneity of de-

grees, it is observed that the interconnections between the

nodes are not entirely random; rather “disassortative”. For

example high-degree nodes tend to be connected to low-

degree nodes [11]. The real-world representative snapshots of

commercial Gnutella networks accordingly exhibits negative

degree correlation with assortativity coefficient r = −0.792.
Hence to understand the exact impact of attacks, the interde-

pendence of degree heterogeneity and degree-degree correla-

tion need to be taken into consideration.

In order to achieve that, we propose a generalized frame-

work for correlated network using tools from percolation

theory and the apparatus of generating functions. We show

that our framework is able to correctly assess the network

properties like topological deformation as well as estimate the

resilience of the network. We show that the framework can

be applied to real-world networks by accurately predicting

the topology deformation in the simulated real-world Gnutella

network.

II. ENVIRONMENT DEFINITION

Apart from using the snapshot of Gnutella network, we

model the superpeer networks with bimodal network for our
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Fig. 1. Effect of attack and failure upon the Gnutella network simulated
from the topological snapshot taken during September 2004. (a) The degree
distribution of the deformed Gnutella network after random failure. Here
20% of the nodes are removed from the network randomly. (b) The degree
distribution of the deformed Gnutella network after deterministic attack. Here
all the nodes in the network having degree greater than 40 are removed.

simulation based experiments. In this section, we provide

a brief description of the modeling of different network

topologies and attacks. In addition, we also provide the formal

representation of the network assortativity as a manifestation

of network heterogeneity.

A. Modeling Superpeer Network Topologies

It has been observed that the superpeer networks follow

bimodal degree distribution that sharply deviates from the

power law behavior of scale free networks [6], [12]. Rigorous

simulation results show that both of these networks namely

bimodal networks and superpeer networks exhibit similar

qualitative behavior under various node disturbances like churn

and intentional attack. Therefore we believe bimodal network

is simple enough to understand; at the same time it captures the

essential features of superpeer networks. In bimodal network,

a small fraction (1 − α) of high degree (km) superpeers are

connected with a large fraction (α) of low degree (kl) peer

nodes. Hence pkl
= α and pkm

= (1− α).

B. Attack Model

The attacks on a network are modeled in terms of different

node removal strategies. Let fk be the probability by which a

node of degree k is removed from the network. In this paper,

we primarily concentrate on deterministic attack where nodes

having high degrees are progressively removed. Formally

fk = 1 when k > kcut
0 ≤ fk < 1 when k = kcut
fk = 0 when k < kcut.

This removes all the nodes from the network with degree

greater than kcut and a fraction of nodes having degree equal

to kcut. Kindly note that, fk = f represents the degree

independent attack or random failure. In random failure, the

removal of any randomly chosen node having degree k after

the attack is constant and independent of its degree k.

C. Assorativity

A correlated network can be completely defined by its

degree distribution pk and a degree-degree correlation matrix

P (Matrix 1), where an element P (i, j) defines the probability

P =













P (1, 1) P (1, 2) ... P (1, kmax)
P (2, 1) P (2, 2) ... P (2, kmax)

. . . .

. . . .

P (kmax, 1) P (kmax, 2) ... P (kmax, kmax)













Matrix 1: Degree-degree correlation matrix

of finding an edge emerging from an i degree node to a j

degree node.

In case of an undirected network the probability that a node

of degree i and a node of degree j gets connected is same as

that of a node of degree j getting connected with a node of

degree i. Hence,

P (i, j) = P (j, i) for undirected graph (1)

The probability of finding an edge with an i degree node at

least at one end is given by the sum of the elements of the ith

row of the matrix P and it can be expressed as

∑

j

P (i, j) =
i.pi

∑

k k.pk
=

i.pi

〈k〉
(2)

Interestingly, the definition of degree-degree correlation matrix

can be applied to random networks (that have no degree-degree

correlation), where the probability of an edge emerging from

i degree node to j degree node is the probability of selecting

one tip of degree i and one tip of degree j. Formally, for

random networks

P (i, j) =
i.pi

〈k〉
.
j.pj

〈k〉
(3)

The assortativity coefficient r, the measure of degree-degree

correlation, of a network lies in the range −1 ≤ r ≤ 1 and can

be computed from the matrix P using the expression proposed

by Newman [11] as

r =

∑

j,k jkP (j, k)− [
∑

j,k(
j+k

2 )P (j, k)]2

∑

j,k(
j2+k2

2 )P (j, k)− [
∑

j,k(
j+k

2 )P (j, k)]2
(4)

III. DEVELOPING ANALYTICAL FRAMEWORK FOR

CORRELATED NETWORKS

In this section, we present a formalism to analyze the topo-

logical deformation and resilience of the correlated network

undergoing any kinds of attacks. We are going to establish

the relationship between stability, pk and fk using the degree-

degree correlation matrix P . This is done as a two step process;

in the first step, we calculate the degree distribution of the

deformed network. In the second step, we derive the critical

condition of stability of p2p networks against attack.

A. Deformed Topology after attack

Here, we theoretically compute the degree distribution of

the deformed topology p′k after performing an attack on

the correlated p2p network of size N with initial degree

distribution pk. We first select the nodes that are going to
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Fig. 2. Dissection of a correlated network into two sets S and R due to the
attack on the network.

be removed according to the probability distribution fk and

then divide the network into two subsets, one subset contains

the surviving nodes (S) while the other subset comprises of

the nodes that are going to be removed (R). This is illustrated

in fig. 2. The degree distribution of the surviving subset S is

(1− fk).pk while the subset of nodes to be removed R (that

is the edges connecting set S and set R) still exists. However,

when these nodes are actually removed, the degree distribution

of the surviving nodes in S is changed due to the removal of

the Ej edges, for every degree j, that run between nodes of

degree j in the surviving set S and any node of the removed

set R.

To calculate the degree distribution after the attack, we have

to estimate E =
∑kmax

j=0 Ej , which is the total number of edges

running between set S and R. The expression for Ej can be

formulated in the following way. A node of degree k has k tips

to which an edge can be attached and the total number of tips

present in the network, S
⋃

R, is N · 〈k〉. A fraction of these

tips are j degree tips that are connected to k degree tips and

can be expressed as N · 〈k〉 ·P (j, k). We know, the probability

that a node of degree j lies in set S and a k degree node lies in

set R are (1− fj) and fk respectively. Therefore, the number

of edges connecting a node of degree j in the set S and a node

of degree k in the set R becomes N ·〈k〉 ·P (j, k) ·fk ·(1−fj).
This helps us in deriving the total number of edges whose one

end is connected to j degree node in set S and the other end

is connected to any node in set R, which is

Ej = N · 〈k〉 · (1− fj)
∑

k

P (j, k) · fk (5)

Using Ej we can calculate the probability φj of finding an

edge running between a j degree node in the surviving set S

and any node in the set R expressed as

φj =
Ej

j ·N · pj · (1− fj)
(6)

The term φj also signifies the probability that a j degree node

loses one link due to the removal of E edges. Here we define

the probability psk of finding a node with degree k in the

surviving set S (before removing the E edges) as

psk =
(1− fk).pk
1−

∑

i pi.fi
(7)

The removal of nodes can only lead to a decrease in the degree

of a survived node. If we find a node of degree k that has

survived, it can be due to the fact that originally its degree

was k+ q and k of its edges survived while q (q may be zero

also) got removed. The fraction of nodes having degree k after

attack i.e. p′k is given by the fraction of psk nodes, who did not

lose any link, and a fraction of psk+1 nodes who lost one link

but rest k links survived, a fraction of psk+2 nodes who lost

two links but rest k links survived and so on. Hence using the

concept of binomial distribution and from the equations (6)

and (7), we obtain the following expression for p′k:

p′k =

kmax
∑

q=k

(

q

k

)

φq−k
q (1− φq)

k psq (8)

(1) Special Case - Random failure: In this section we try

to investigate the impact of a random failure attack on a

correlated network and its deformed degree distribution. In

case of random failure attack the probability of attack on every

node is same i.e. fj = fk = f (constant). Using fj = fk = f

and eq. (2) in eq. (5), the expression for Ej reduces to

Ej = f · (1− f) ·N · j · pj (9)

We substitute the expression for Ej obtained from eq. (9) in

eq. (6) and simplify φj as

φj =
f · (1− f) ·N · j · pj
j ·N · pj · (1− f)

= f (10)

The deformed degree-distribution of the network due to ran-

dom failure is obtained by using eq. (10) in eq. (8), expressed

as

p′k =

kmax
∑

q=k

(

q

k

)

fq−k(1− f)k psq (11)

Interestingly, the expression obtained in eq. (11) is exactly

the same equation proposed in [7] for the deformed degree

distribution of an uncorrelated network due to random failure.

The above expression shows that degree-degree correlation has

no role to play in case of random failure. This conclusion

confirms the result shown in fig. 1(a) where we observe

a good agreement of deformed topology obtained from the

uncorrelated network theory [7] and simulation for Gnutella

network.

(2) Special Case - Uncorrelated Networks: For uncorrelated

networks, we use eq. (3) and eq. (5), to compute φj , the

probability that a j degree node loses one tip, and the eq. (6)

reduces to

φj =

∑

k k · pk · fk
〈k〉

= φ (12)

The above expression shows that for uncorrelated networks,

φj is independent of degree j and hence we denote it by

φ. Using the reduced value of φj into the eq. (8) we get

back the expression for deformed degree distribution of an

uncorrelated network against any attack proposed in [7]. Hence

our theory to predict the deformed degree-distribution of

correlated networks against any attack can also be applied to

the uncorrelated networks.
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(b)

Fig. 3. (a) Effect on Gnutella network topology due to deterministic attack
(by removing nodes with degree higher than 39). (b) Topological deformation
of correlated bimodal network with assortativity coefficient of 0.81 due to the
removal of 10% nodes deterministically. For both the cases simulation result
is obtained as the average of 500 realizations.

B. Critical Condition for Stability

Our aim is to establish a relation between the percolation

threshold (the measure of resilience), degree distribution pk,

correlation matrix P and the attack vector fk for a correlated

network. In order to achieve that, we follow the model

developed by Goltsev et al. in [13] and customize it for

developing a generalized stability criterion for a correlated

network against any attack. We find that the stability (existence

of giant component) of the deformed network depends upon

the largest eigenvalue of a matrix called branching matrix B

where

B(k, j) = (1− fj)(j − 1)P (k, j)
〈k〉

k pk
(13)

After applying an attack fk if the largest eigenvalue of the

matrix B is greater than or equal to 1, then there exists giant

connected component. This is the critical condition for the

stability of a correlated network against any given attack.

IV. EXPERIMENTAL VALIDATION

In this section, we validate the theory derived for topology

deformation and critical condition for stability of correlated

network against various attacks through stochastic simulation.

Based on the generation of the superpeer networks, the vali-

dation is done from two different perspectives, (a) simulating

the real world Gnutella network (b) generating the superpeer

networks from complex graphs.

A. Gnutella Network

To analyze the topology deformation due to deterministic

attack we remove all the nodes with degree higher than 39.
In fig. 3(a) we can see that our theory correctly predicts the

topology deformation in the simulated real-world Gnutella

network whereas the uncorrelated network theory fails to do

so. Since the real-world network Gnutella is disassortative,

the removal of one superpeer node leads to the removal of

large number of peers. Hence, we expect that the Gnutella

network can be disrupted very easily by applying deterministic

attack, where the targeted nodes are of very high degree. The

results are quite expected as the percolation threshold of the

Gnutella network against deterministic attack obtained from

theory and from simulation are 0.0204 and 0.0214 respectively,

which means that removal of just 2% of nodes is enough to

disintegrate the network.

B. Correlated Bimodal Networks

We have considered a bimodal superpeer network with peer

degree 4, superpeer degree 15, assortativity coefficient 0.81
(highly assortative) and assumed that 80% nodes are peers.

We remove 10% nodes which amounts to the removal of

50% superpeer nodes. The theory quite precisely predicts the

deformed degree distribution as shown in fig. 3(b), and the

percolation threshold of the network obtained from theory

and from simulation are 0.71 and 0.73 respectively. When the

stability of this network is measured at −0.49 assortativity,

the theoretical as well as the simulation percolation threshold

are found to be as low as 0.2.
Understanding Trends of Degree Deformation: In order

to understand the impact of deterministic attack, we plot the

deformed degree distribution of the bimodal network for vari-

ous assortativity coefficient in fig. 4(a). We observe that as the

network becomes more and more disassortative, the fraction

of peers of degree 4 in the deformed network, represented by

the peak at degree 4, decreases. Intuitively, we can explain

the phenomena using the fact that in a disassortative network

the interconnection among peers and superpeers is higher than

that of in an assortative network. Hence, removal of a fraction

of superpeer leads to removal of a higher number of edges

from the peers. So, the peer degree begins to lose its modality

and the distribution becomes flat at the region around the peer

degree.

After the attack, a fraction of superpeers (degree h) that

survived the attack lose exactly (h− l) tips and become peers

(degree l) causing increase in the number of peers. Using psh,

the probability of finding a degree h node in set S, from eq. (7)

and φh, the probability that a h degree node loses a tip, from

eq. (6), the increase in fraction of peers, linc, is expressed as

linc =

(

h

h− l

)

φh−l
h (1− φh)

l psh (14)

On the other hand pl · fl fraction of peers are removed due to

the attack. From the rest of the peers, pl · (1− fl), a fraction

of peers lose some tips resulting in decrease in the number

of peers. The probability that a l degree node loses at least

one tip is given by (1− (1− φl)
l). Therefore, the decrease in

fraction of peers, ldec, can be expressed as

ldec = pl · fl + pl · (1− fl) · (1− (1− φl)
l) (15)

Hence the probability of finding a peer after attack can be

expressed as

p′l =
pl − ldec + linc
∑

k kpk(1− fk)
(16)

As the network turns more and more disassortative, the prob-

ability φl that a peer will lose a tip increases, whereas the

probability φh that a superpeer will lose a tip decreases. This

in turn increases ldec and decreases linc leading to overall

decrease in p′l. Using the theory, the change in fraction of peers
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Fig. 4. Effect of deterministic attack on the topology of a correlated bimodal
network with 20% superpeers of degree 15 and 80% peers of degree 4. (a)
Change in the deformed topology at different degree-degree correlations. (b)
Change in fraction of peers after attack at different degree-degree correlation.

for same attack intensity at different degree-degree correlation

has been predicted perfectly as shown in the fig. 4(b). We

find that this change follows a parabolic path.

V. CASE STUDY: ATTACKS ON BIMODAL NETWORK

Equipped with the framework, that can accurately measure

the impact of degree heterogeneity and degree-degree correla-

tion on the superpeer networks, we determine the parameters

that need to be understood to build resilient superpeer infras-

tructures. These parameters are:

(a) Properties of transition point: We define transition point

as the configuration of a superpeer network where just the

removal of superpeers is not sufficient to disrupt the network.

Also as a corollary, the exact amount of peers to be removed

beyond such points need to be determined.

(b) Critical assortativity: It is the assortativity at which a

superpeer reaches the transition point.

(c) Critical peer degree: It is the peer degree below which

the superpeer topology is fragile.

Bimodal networks, as stated in sec. II-A, are simplest yet

reasonably accurate way to model superpeer networks and

hence, helps us to analyze the aforementioned dominant

resilience parameters at different degree-degree correlation

under different intensity of deterministic attacks. Even though

the results presented are on bimodal network topologies, they

provide important insights while designing resilient general-

ized superpeer topologies.

For a given bimodal distribution with superpeer degree

h, peer degree l and assortativity coefficient r, the degree-

degree correlation matrix can be constructed from eq. (4). It

is a symmetric matrix where the four non-zero entries are as

follows:

P (l, l) = l.pl(l.pl+r.h.ph)
〈k〉2

P (l, h) = P (h, l) = (1−r)l.pl.h.ph

〈k〉2

P (h, h) = h.ph(r.l.pl+h.ph)
〈k〉2

Using this matrix we determine the corresponding branching

matrix B. At the critical condition of stability, when the largest

eigen value of matrix B is 1, the deterministic attack on the

bimodal network leads to the following two cases that can be

computed from eq. (13):

1 Removal of a fraction of superpeers, fh is sufficient to

disintegrate the network.

fh = 1−
(l − 1)(l.pl + r.h.ph)− 〈k〉

(h− 1)[r(l − 1)− (r.l.pl + h.ph)]
(17)

As the fraction of superpeer nodes in the network is ph,

the percolation threshold fc for case 1 becomes ph · fh.
2 Removal of all the superpeers is not sufficient to disin-

tegrate the network. Therefore, we need to remove some

of the peer nodes, fl, along with the superpeers.

fl = 1−
〈k〉

(l − 1)(l.pl + r.h.ph)
(18)

As the fraction of superpeer nodes in the network is ph
and fraction of peers is pl, the percolation threshold for

case 2 becomes fc = pl · fl + ph.

(a) Transition Point: The transition point which is the transi-

tion from case 1 to case 2 can be easily marked by observing

the value of the percolation threshold fc. While calculating,

if the value of fc exceeds the fraction of superpeers in the

network (ph), it indicates that removal of all the superpeers

is not sufficient to disrupt the network. The behavior of

percolation threshold with respect to various assortativity

coefficient is noted in fig. 5(a). The curves showing percolation

threshold values beyond 0.2 indicate that peers have to be

removed beyond superpeers to breakdown the network. It

is observed that the network becomes more resilient as we

increase the assortativity. It is also observed that beyond a

certain peer degree (here 5) for the superpeer degree 15, it
becomes impossible to break the network by removing just

the superpeers, at any assortativity coefficient. Typically it

is observed that the superpeer degree to peer degree ratio,

(h : l), needs to be above 3 for the attacker targeting only the

superpeers to be successful.

(b) Critical Assortativity Coefficient rc: The parameter rc,

is the assortativity at transition point and can be computed

from eq. (17) as,

rc =
1

l − 1
−

l.pl(l − 2)

h.ph(l − 1)
(19)

At peer degree l = 1, the value of rc from eq. (19) becomes

undefined, whereas at peer degree l = 2, the critical value is 1.
This is the position where all the 2 degree nodes participate to

form a giant component and remain unaffected by the removal

of all the superpeers. In both the cases, rc is independent of

the superpeer degree h. When the parameters h, ph and pl are

kept constant, the eq. (19) reduces to

rc ≈
1

l
−K.l (20)

where K is a constant. This shows that the rc is inversely

proportional to the peer degree l. This is in line with the

observation in fig. 5(a).

(c) Minimum Assortativity Coefficient rmin: Even though

the theoretical minimum value that the assortativity coefficient

of a network can take is −1, for some bimodal configuration

it is not possible to generate the network below a certain
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Fig. 5. Effect of deterministic attack on bimodal network with superpeer
degree h = 15 and fraction of peers pl = 0.8. The peer degree has been
varied from 1 to 8.(a) Effect of deterministic attack at different assortativity
coefficient. (b) Critical peer degree at different superpeer degree.

assortativity coefficient rmin. This can be easily marked by

observing the emergence of negative entries in the generated

degree-degree correlation matrix P for the bimodal network.

A bimodal configuration with rc < rmin indicates that even

the most disassortative network of the given configuration

can not be disrupted by removing all the superpeers and

hence the knowledge of rmin for a bimodal configuration

is a very important parameter in determining the resilience

against deterministic attack. We have computed rmin for all

the bimodal configuration considered in our case and are

shown in the inset of fig. 5(b). The assortativity coefficients

at which different feasible bimodal configuration appear are

shown in fig. 5(a). For example, the first feasible configuration

for the network with superpeer degree 15 and peer degree 8
is at around −0.45 assortativity instead of −1. Also, note that

for l ≥ 6 even the first feasible configuration ensures a stable

setting.

(d) Peer Degree lc for a Superpeer Degree h: Since, for

a bimodal network, rc depends upon the peer degree l, we

determine critical peer degree, lc (for a given superpeer degree

h), at which removal of all the superpeers are insufficient to

disrupt the network and this happens when rc < rmin. Hence

the eq. (19) can be written as

rmin >
1

lc − 1
−

lc.plc(lc − 2)

h.ph(lc − 1)
(21)

Using the eq. (21) we have theoretically computed the critical

peer degree lc for superpeer degree 20 ≤ h ≤ 50 with 80%
nodes as peers and compared it with the simulation result. The

comparison in fig. 5(b) shows that the results are in excellent

agreement. Interestingly, the ratio lc
h

(shown in the inset of

fig. 5(b)) shows some sort of invariance.

(e) Remaining Network Size Beyond Transition Point:

Beyond transition point, in a superpeer network at r = 1,
the fraction of peers to be removed in order to breakdown the

entire network can be computed from the eq. (18) as

fl = 1−
1

l − 1
(22)

In other words, at percolation threshold beyond transition

point, with the increase in peer degree l for a given completely

assortative bimodal configuration (r = 1), the fraction of

peers removed increases which in turn decreases the remaining

number of peers in the network. It can be seen in the fig. (5(a)),

at r = 1, the percolation threshold increases with the increase

in peer degree l. Hence it can be said that beyond transition

point the remaining network size is inversely proportional to

the peer degree.

VI. CONCLUSION

This paper is a small but important step towards under-

standing the interplay of various complex interdependencies

acting on large dynamic networks. It develops a generalized

analytical framework in order to understand the impact of

degree-degree correlation on the resilience of large scale su-

perpeer network topologies and makes important observations.

The interesting findings of the paper are: (a) For a superpeer

network topology, there may exist a critical assortative mixing

rc beyond which it is impossible to disrupt the network even

by removing all the superpeers, (b) Critical assortativity rc
is independent of superpeer degree for peer degree 1 and

2, whereas it becomes inversely proportional to peer degree

l ≥ 3, (c) For a superpeer network configuration, there exists

a critical peer degree lc above which the network remains

resilient to targeted attacks, and (d) The critical peer degree

to superpeer degree ratio is an important invariant which can

be used to measure the resilience. Thus we have identified

the parameter space which when considered in the design

methodology of superpeer topologies can lead to resilient

infrastructures.
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